Prognostic Impact of Coronary Flow Reserve in Patients With Reduced Left Ventricular Ejection Fraction

Hyun Sung Joh, Doosup Shin, Joo Myung Lee, Seung Hun Lee, David Hong, Ki Hong Choi, Doyeon Hwang, Coen K M Boerhout, Guus A de Waard, Ji-Hyun Jung, Hernan Mejia-Renteria, Masahiro Hoshino, Mauro Echavarria-Pinto, Martijn Meuwissen, Hitoshi Matsuo, Maribel Madera-Cambero, Ashkan Eftekhari, Mohamed A Effat, Tadashi Murai, Koen Marques, Joon-Hyung Doh, Evald H Christiansen, Rupak Banerjee, Hyun Kuk Kim, Chang-Wook Nam, Giampaolo Niccoli, Masafumi Nakayama, Nobuhiro Tanaka, Eun-Seok Shin, Steven A J Chamuleau, Niels van Royen, Paul Knaapen, Bon Kwon Koo, Tsunekazu Kakuta, Javier Escaned, Jan J Piek, Tim P van de Hoef, ILIAS Registry Investigators [Link], Tim P van de Hoef, Joo Myung Lee, Ki Hong Choi, David Hong, Seung Hun Lee, Doosup Shin, Masahiro Hoshino, Tadashi Murai, Tsunekazu Kakuta, Bon Kwon Koo, Doyeon Hwang, Coen K M Boerhout, Jan J Piek, Guus A de Waard, Steven A J Chamuleau, Koen Marques, Paul Knaapen, Ji-Hyun Jung, Hernan Mejia-Renteria, Javier Escaned, Mauro Echavarria-Pinto, Martijn Meuwissen, Hitoshi Matsuo, Maribel Madera-Cambero, Ashkan Eftekhari, Evald H Christiansen, Mohamed AEffat, Joon-Hyung Doh, Rupak Banerjee, Hyun Kuk Kim, Chang-Wook Nam, Giampaolo Niccoli, Masafumi Nakayama, Nobuhiro Tanaka, Eun-Seok Shin, Niels Royen, Hyun Sung Joh, Doosup Shin, Joo Myung Lee, Seung Hun Lee, David Hong, Ki Hong Choi, Doyeon Hwang, Coen K M Boerhout, Guus A de Waard, Ji-Hyun Jung, Hernan Mejia-Renteria, Masahiro Hoshino, Mauro Echavarria-Pinto, Martijn Meuwissen, Hitoshi Matsuo, Maribel Madera-Cambero, Ashkan Eftekhari, Mohamed A Effat, Tadashi Murai, Koen Marques, Joon-Hyung Doh, Evald H Christiansen, Rupak Banerjee, Hyun Kuk Kim, Chang-Wook Nam, Giampaolo Niccoli, Masafumi Nakayama, Nobuhiro Tanaka, Eun-Seok Shin, Steven A J Chamuleau, Niels van Royen, Paul Knaapen, Bon Kwon Koo, Tsunekazu Kakuta, Javier Escaned, Jan J Piek, Tim P van de Hoef, ILIAS Registry Investigators [Link], Tim P van de Hoef, Joo Myung Lee, Ki Hong Choi, David Hong, Seung Hun Lee, Doosup Shin, Masahiro Hoshino, Tadashi Murai, Tsunekazu Kakuta, Bon Kwon Koo, Doyeon Hwang, Coen K M Boerhout, Jan J Piek, Guus A de Waard, Steven A J Chamuleau, Koen Marques, Paul Knaapen, Ji-Hyun Jung, Hernan Mejia-Renteria, Javier Escaned, Mauro Echavarria-Pinto, Martijn Meuwissen, Hitoshi Matsuo, Maribel Madera-Cambero, Ashkan Eftekhari, Evald H Christiansen, Mohamed AEffat, Joon-Hyung Doh, Rupak Banerjee, Hyun Kuk Kim, Chang-Wook Nam, Giampaolo Niccoli, Masafumi Nakayama, Nobuhiro Tanaka, Eun-Seok Shin, Niels Royen

Abstract

Background Intracoronary physiologic indexes such as coronary flow reserve (CFR) and left ventricular ejection fraction (LVEF) have been regarded as prognostic indicators in patients with coronary artery disease. The current study evaluated the association between intracoronary physiologic indexes and LVEF and their differential prognostic implications in patients with coronary artery disease. Methods and Results A total of 1889 patients with 2492 vessels with available CFR and LVEF were selected from an international multicenter prospective registry. Baseline physiologic indexes were measured by thermodilution or Doppler methods and LVEF was recorded at the index procedure. The primary outcome was target vessel failure, which was a composite of cardiac death, target vessel myocardial infarction, or clinically driven target vessel revascularization over 5 years of follow-up. Patients with reduced LVEF <50% (162 patients [8.6%], 202 vessels [8.1%]) showed a similar degree of epicardial coronary artery disease but lower CFR values than those with preserved LVEF (2.4±1.2 versus 2.7±1.2, P<0.001), mainly driven by the increased resting coronary flow. Conversely, hyperemic coronary flow, fractional flow reserve, and the degree of microvascular dysfunction were similar between the 2 groups. Reduced CFR (≤2.0) was seen in 613 patients (32.5%) with 771 vessels (30.9%). Reduced CFR was an independent predictor for target vessel failure (hazard ratio, 2.081 [95% CI, 1.385-3.126], P<0.001), regardless of LVEF. Conclusions CFR was lower in patients with reduced LVEF because of increased resting coronary flow. Patients with reduced CFR showed a significantly higher risk of target vessel failure than did those with preserved CFR, regardless of LVEF. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04485234.

Keywords: coronary flow reserve; coronary physiology; left ventricular ejection fraction; prognosis.

Figures

Figure 1. Study flow.
Figure 1. Study flow.
Study flow is presented. Among the total population of the ILIAS registry (2322 patients with 3046 vessels), patients with unavailable baseline LVEF or CFR data and without follow‐up data were excluded for the current study, leaving 1889 patients with 2492 vessels with clinical outcomes during 5 years of follow‐up. CFR indicates coronary flow reserve; ILIAS (Inclusive Invasive Physiological Assessment in Angina Syndromes) registry; LVEF, left ventricular ejection fraction; and TVF, target vessel failure.
Figure 2. Comparison of flow‐derived physiologic indexes…
Figure 2. Comparison of flow‐derived physiologic indexes according to LVEF.
Comparison of A, CFR, B, Resting Tmn, C, Hyperemic Tmn, D, IMR, E, Resting APV, F, Hyperemic APV, G, BMR, H, HMR are shown according to LVEF. Data are expressed as mean±SD or median (interquartile range). APV indicates averaged peak velocity; BMR, basal microvascular resistance; CFR, coronary flow reserve; HMR, hyperemic microvascular resistance; IMR, index of microcirculatory resistance; LVEF, left ventricular ejection fraction; and Tmn, mean transit time.
Figure 3. Comparison of physiologic indexes of…
Figure 3. Comparison of physiologic indexes of epicardial coronary stenosis according to LVEF.
A, Resting Pd/Pa, B, FFR, C, Basal Stenosis Resistance, D, Hyperemic Stenosis Resistance are compared between patients with preserved and reduced LVEF. Data are expressed as mean±SD or median (interquartile range). FFR indicates fractional flow reserve; resting Pd/Pa, resting distal coronary pressure/aortic pressure; and LVEF, left ventricular ejection fraction.
Figure 4. Comparison of TVF According to…
Figure 4. Comparison of TVF According to LVEF and CFR.
Cumulative incidence of TVF at 5 years are compared among 4 groups classified according to LVEF and CFR. Multivariable marginal Cox proportional hazard regression was used to calculate adjusted HR and 95% CI. The adjusted covariables were age, sex, diabetes, previous myocardial infarction, clinical presentation, multivessel disease, target vessel intervention, pre‐PCI diameter stenosis, pre‐PCI FFR≤0.80, and increased microcirculatory resistance (IMR≥25 or HMR≥2.5). CFR indicates coronary flow reserve; FFR, fractional flow reserve; HMR, hyperemic microvascular resistance; HR, hazard ratio; IMR, index of microvascular resistance; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; and TVF, target vessel failure.
Figure 5. Comparison of target vessel failure…
Figure 5. Comparison of target vessel failure according to different patterns of depressed CFR.
Cumulative incidence of TVF at 5 years is compared according to different patterns in resting and hyperemic coronary flow among depressed CFR cohort. In this analysis, 305 vessels with missing value in resting and hyperemic Tmn (19.4% of thermodilution technique) were excluded. Regardless of different patterns in resting and hyperemic flow, the depressed CFR cohort showed significantly higher risk of TVF than the preserved CFR cohort. CFR indicates coronary flow reserve; Tmn, mean transit time; and TVF, target vessel failure.

References

    1. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol. 1990;15:459–474. doi: 10.1016/s0735-1097(10)80078-6
    1. van de Hoef TP, Siebes M, Spaan JA, Piek JJ. Fundamentals in clinical coronary physiology: why coronary flow is more important than coronary pressure. Eur Heart J. 2015;36:3312–3319a. doi: 10.1093/eurheartj/ehv235
    1. van de Hoef TP, Bax M, Meuwissen M, Damman P, Delewi R, de Winter RJ, Koch KT, Schotborgh C, Henriques JP, Tijssen JG, et al. Impact of coronary microvascular function on long‐term cardiac mortality in patients with acute ST‐segment‐elevation myocardial infarction. Circ Cardiovasc Interv. 2013;6:207–215. doi: 10.1161/CIRCINTERVENTIONS.112.000168
    1. van de Hoef TP, van Lavieren MA, Damman P, Delewi R, Piek MA, Chamuleau SA, Voskuil M, Henriques JP, Koch KT, de Winter RJ, et al. Physiological basis and long‐term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv. 2014;7:301–311. doi: 10.1161/CIRCINTERVENTIONS.113.001049
    1. Lee JM, Jung JH, Hwang D, Park J, Fan Y, Na SH, Doh JH, Nam CW, Shin ES, Koo BK. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J Am Coll Cardiol. 2016;67:1158–1169. doi: 10.1016/j.jacc.2015.12.053
    1. Lee JM, Choi KH, Hwang D, Park J, Jung JH, Kim HY, Jung HW, Cho YK, Yoon HJ, Song YB, et al. Prognostic implication of thermodilution coronary flow reserve in patients undergoing fractional flow reserve measurement. JACC Cardiovasc Interv. 2018;11:1423–1433. doi: 10.1016/j.jcin.2018.05.005
    1. Gupta A, Taqueti VR, van de Hoef TP, Bajaj NS, Bravo PE, Murthy VL, Osborne MT, Seidelmann SB, Vita T, Bibbo CF, et al. Integrated noninvasive physiological assessment of coronary circulatory function and impact on cardiovascular mortality in patients with stable coronary artery disease. Circulation. 2017;136:2325–2336. doi: 10.1161/CIRCULATIONAHA.117.029992
    1. Triposkiadis F, Giamouzis G, Parissis J, Starling RC, Boudoulas H, Skoularigis J, Butler J, Filippatos G. Reframing the association and significance of co‐morbidities in heart failure. Eur J Heart Fail. 2016;18:744–758. doi: 10.1002/ejhf.600
    1. Kobayashi Y, Tonino PA, De Bruyne B, Yang HM, Lim HS, Pijls NH, Fearon WF, Investigators FS. The impact of left ventricular ejection fraction on fractional flow reserve: insights from the FAME (Fractional flow reserve versus Angiography for Multivessel Evaluation) trial. Int J Cardiol. 2016;204:206–210. doi: 10.1016/j.ijcard.2015.11.169
    1. Hoffman JI. Problems of coronary flow reserve. Ann Biomed Eng. 2000;28:884–896. doi: 10.1114/1.1308503
    1. Toth GG, Johnson NP, Jeremias A, Pellicano M, Vranckx P, Fearon WF, Barbato E, Kern MJ, Pijls NH, De Bruyne B. Standardization of Fractional Flow Reserve Measurements. J Am Coll Cardiol. 2016;68:742–753. doi: 10.1016/j.jacc.2016.05.067
    1. Yong AS, Layland J, Fearon WF, Ho M, Shah MG, Daniels D, Whitbourn R, Macisaac A, Kritharides L, Wilson A, et al. Calculation of the index of microcirculatory resistance without coronary wedge pressure measurement in the presence of epicardial stenosis. JACC Cardiovasc Interv. 2013;6:53–58. doi: 10.1016/j.jcin.2012.08.019
    1. Sambuceti G, Marzilli M, Marraccini P, Schneider‐Eicke J, Gliozheni E, Parodi O, L'Abbate A. Coronary vasoconstriction during myocardial ischemia induced by rises in metabolic demand in patients with coronary artery disease. Circulation. 1997;95:2652–2659. doi: 10.1161/01.cir.95.12.2652
    1. Garcia‐Garcia HM, McFadden EP, Farb A, Mehran R, Stone GW, Spertus J, Onuma Y, Morel MA, van Es GA, Zuckerman B, et al. Standardized end point definitions for coronary intervention trials: the academic research consortium‐2 consensus document. Circulation. 2018;137:2635–2650. doi: 10.1161/CIRCULATIONAHA.117.029289
    1. van de Hoef TP, Bax M, Damman P, Delewi R, Hassell ME, Piek MA, Chamuleau SA, Voskuil M, van Eck‐Smit BL, Verberne HJ, et al. Impaired coronary autoregulation is associated with long‐term fatal events in patients with stable coronary artery disease. Circ Cardiovasc Interv. 2013;6:329–335. doi: 10.1161/CIRCINTERVENTIONS.113.000378
    1. Skalidis EI, Parthenakis FI, Patrianakos AP, Hamilos MI, Vardas PE. Regional coronary flow and contractile reserve in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2004;44:2027–2032. doi: 10.1016/j.jacc.2004.08.051
    1. Majmudar MD, Murthy VL, Shah RV, Kolli S, Mousavi N, Foster CR, Hainer J, Blankstein R, Dorbala S, Sitek A, et al. Quantification of coronary flow reserve in patients with ischaemic and non‐ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging. 2015;16:900–909. doi: 10.1093/ehjci/jev012
    1. Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of coronary blood flow. Compr Physiol. 2017;7:321–382. doi: 10.1002/cphy.c160016
    1. Mosher P, Ross J Jr, McFate PA, Shaw RF. Control of coronary blood flow by an autoregulatory mechanism. Circ Res. 1964;14:250–259. doi: 10.1161/01.res.14.3.250
    1. van de Hoef TP, Nolte F, Echavarría‐Pinto M, van Lavieren MA, Damman P, Chamuleau SA, Voskuil M, Verberne HJ, Henriques JP, van Eck‐Smit BL, et al. Impact of hyperaemic microvascular resistance on fractional flow reserve measurements in patients with stable coronary artery disease: insights from combined stenosis and microvascular resistance assessment. Heart. 2014;100:951–959. doi: 10.1136/heartjnl-2013-305124
    1. Murai T, Lee T, Yonetsu T, Isobe M, Kakuta T. Influence of microvascular resistance on fractional flow reserve after successful percutaneous coronary intervention. Catheter Cardiovasc Interv. 2015;85:585–592. doi: 10.1002/ccd.25499
    1. McClish JC, Ragosta M, Powers ER, Barringhaus KG, Gimple LW, Fischer J, Garnett J, Siadaty M, Sarembock IJ, Samady H. Effect of acute myocardial infarction on the utility of fractional flow reserve for the physiologic assessment of the severity of coronary artery narrowing. Am J Cardiol. 2004;93:1102–1106. doi: 10.1016/j.amjcard.2004.01.035
    1. Claeys MJ, Bosmans JM, Hendrix J, Vrints CJ. Reliability of fractional flow reserve measurements in patients with associated microvascular dysfunction: importance of flow on translesional pressure gradient. Catheter Cardiovasc Interv. 2001;54:427–434. doi: 10.1002/ccd.2005
    1. Di Gioia G, De Bruyne B, Pellicano M, Bartunek J, Colaiori I, Fiordelisi A, Canciello G, Xaplanteris P, Fournier S, Katbeh A, et al. Fractional flow reserve in patients with reduced ejection fraction. Eur Heart J. 2020;41:1665–1672. doi: 10.1093/eurheartj/ehz571
    1. Ng MK, Yeung AC, Fearon WF. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation. 2006;113:2054–2061. doi: 10.1161/CIRCULATIONAHA.105.603522
    1. Johnson NP, Gould KL. Integrating noninvasive absolute flow, coronary flow reserve, and ischemic thresholds into a comprehensive map of physiological severity. JACC Cardiovasc Imaging. 2012;5:430–440. doi: 10.1016/j.jcmg.2011.12.014
    1. McGinn AL, White CW, Wilson RF. Interstudy variability of coronary flow reserve. Influence of heart rate, arterial pressure, and ventricular preload. Circulation. 1990;81:1319–1330. doi: 10.1161/01.cir.81.4.1319
    1. de Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation. 1996;94:1842–1849. doi: 10.1161/01.CIR.94.8.1842

Source: PubMed

3
Tilaa