p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis

Hye Sun Hyun, Kyung Hoon Paik, Hee Yeon Cho, Hye Sun Hyun, Kyung Hoon Paik, Hee Yeon Cho

Abstract

Purpose: Indoxyl sulfate and p-cresyl sulfate are important protein-bound uremic retention solutes whose levels can be partially reduced by renal replacement therapy. These solutes originate from intestinal bacterial protein fermentation and are associated with cardiovascular outcomes and chronic kidney disease progression. The aims of this study were to investigate the levels of indoxyl sulfate and p-cresyl sulfate as well as the effect of probiotics on reducing the levels of uremic toxins in pediatric patients on dialysis.

Methods: We enrolled 20 pediatric patients undergoing chronic dialysis; 16 patients completed the study. The patients underwent a 12-week regimen of VSL#3, a high-concentration probiotic preparation, and the serum levels of indoxyl sulfate and p-cresyl sulfate were measured before treatment and at 4, 8, and 12 weeks after the regimen by using fluorescence liquid chromatography. To assess the normal range of indoxyl sulfate and p-cresyl sulfate we enrolled the 16 children with normal glomerular filtration rate who had visited an outpatient clinic for asymptomatic microscopic hematuria that had been detected by a school screening in August 2011.

Results: The baseline serum levels of indoxyl sulfate and p-cresyl sulfate in the patients on chronic dialysis were significantly higher than those in the children with microscopic hematuria. The baseline serum levels of p-cresyl sulfate in the peritoneal dialysis group were significantly higher than those in the hemodialysis group. There were no significant changes in the levels of these uremic solutes after 12-week VSL#3 treatment in the patients on chronic dialysis.

Conclusion: The levels of the uremic toxins p-cresyl sulfate and indoxyl sulfate are highly elevated in pediatric patients on dialysis, but there was no significant effect by probiotics on the reduction of uremic toxins in pediatric dialysis patients. Therefore, studies for other medical intervention to reduce uremic toxins are also necessary in pediatric patients on dialysis.

Keywords: Children; Chronic dialysis; Indoxyl sulfate; Probiotics; p-Cresyl sulfate.

Conflict of interest statement

No potential conflict of interest relevant to this article was reported.

Figures

Fig. 1
Fig. 1
Serum levels of indoxyl sulfate and p-cresyl sulfate in controls and patients. PD, peritoneal dialysis; HD, hemodialysis.

References

    1. Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63:1934–1943.
    1. Vanholder R, De Smet R. Pathophysiologic effects of uremic retention solutes. J Am Soc Nephrol. 1999;10:1815–1823.
    1. Fagugli RM, De Smet R, Buoncristiani U, Lameire N, Vanholder R. Behavior of non-protein-bound and protein-bound uremic solutes during daily hemodialysis. Am J Kidney Dis. 2002;40:339–347.
    1. Jourde-Chiche N, Dou L, Cerini C, Dignat-George F, Vanholder R, Brunet P. Protein-bound toxins: update 2009. Semin Dial. 2009;22:334–339.
    1. Meyer TW, Hostetter TH. Uremia. N Engl J Med. 2007;357:1316–1325.
    1. Meijers BK, De Loor H, Bammens B, Verbeke K, Vanrenterghem Y, Evenepoel P. p-Cresyl sulfate and indoxyl sulfate in hemodialysis patients. Clin J Am Soc Nephrol. 2009;4:1932–1938.
    1. Evenepoel P, Meijers BK, Bammens BR, Verbeke K. Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl. 2009;(114):S12–S19.
    1. Lin CJ, Wu CJ, Pan CF, Chen YC, Sun FJ, Chen HH. Serum protein-bound uraemic toxins and clinical outcomes in haemodialysis patients. Nephrol Dial Transplant. 2010;25:3693–3700.
    1. Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T, Koga Y. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron. 1996;74:349–355.
    1. Nakabayashi I, Nakamura M, Kawakami K, Ohta T, Kato I, Uchida K, et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant. 2011;26:1094–1098.
    1. de Loor H, Meijers BK, Meyer TW, Bammens B, Verbeke K, Dehaen W, et al. Sodium octanoate to reverse indoxyl sulfate and p-cresyl sulfate albumin binding in uremic and normal serum during sample preparation followed by fluorescence liquid chromatography. J Chromatogr A. 2009;1216:4684–4688.
    1. Pham NM, Recht NS, Hostetter TH, Meyer TW. Removal of the protein-bound solutes indican and p-cresol sulfate by peritoneal dialysis. Clin J Am Soc Nephrol. 2008;3:85–90.
    1. Evenepoel P, Bammens B, Verbeke K, Vanrenterghem Y. Superior dialytic clearance of beta(2)-microglobulin and p-cresol by high-flux hemodialysis as compared to peritoneal dialysis. Kidney Int. 2006;70:794–799.
    1. Meijers BK, Bammens B, Verbeke K, Evenepoel P. A review of albumin binding in CKD. Am J Kidney Dis. 2008;51:839–850.
    1. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y. Removal of the protein-bound solute p-cresol by convective transport: a randomized crossover study. Am J Kidney Dis. 2004;44:278–285.
    1. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y. Time profiles of peritoneal and renal clearances of different uremic solutes in incident peritoneal dialysis patients. Am J Kidney Dis. 2005;46:512–519.
    1. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y. Removal of middle molecules and protein-bound solutes by peritoneal dialysis and relation with uremic symptoms. Kidney Int. 2003;64:2238–2243.
    1. Liabeuf S, Drueke TB, Massy ZA. Protein-bound uremic toxins: new insight from clinical studies. Toxins (Basel) 2011;3:911–919.
    1. Bianchi-Salvadori B, Vesely R, Ferrari A, Canzi E, Casiraghi C, Brighenti F. Behaviour of the pharmaceutical probiotic preparation VSL#3 in human ileostomy effluent containing its own natural elements. New Microbiol. 2001;24:23–33.
    1. Brigidi P, Swennen E, Vitali B, Rossi M, Matteuzzi D. PCR detection of Bifidobacterium strains and Streptococcus thermophilus in feces of human subjects after oral bacteriotherapy and yogurt consumption. Int J Food Microbiol. 2003;81:203–209.
    1. Ranganathan N, Friedman EA, Tam P, Rao V, Ranganathan P, Dheer R. Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: a 6-month pilot scale trial in Canada. Curr Med Res Opin. 2009;25:1919–1930.

Source: PubMed

3
Tilaa