Probiotic Supplements Beneficially Affect Tryptophan-Kynurenine Metabolism and Reduce the Incidence of Upper Respiratory Tract Infections in Trained Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial

Barbara Strasser, Daniela Geiger, Markus Schauer, Johanna M Gostner, Hannes Gatterer, Martin Burtscher, Dietmar Fuchs, Barbara Strasser, Daniela Geiger, Markus Schauer, Johanna M Gostner, Hannes Gatterer, Martin Burtscher, Dietmar Fuchs

Abstract

Background: Prolonged intense exercise has been associated with transient suppression of immune function and an increased risk of infections. In this context, the catabolism of amino acid tryptophan via kynurenine may play an important role. The present study examined the effect of a probiotic supplement on the incidence of upper respiratory tract infections (URTI) and the metabolism of aromatic amino acids after exhaustive aerobic exercise in trained athletes during three months of winter training.

Methods: Thirty-three highly trained individuals were randomly assigned to probiotic (PRO, n = 17) or placebo (PLA, n = 16) groups using double blind procedures, receiving either 1 × 1010 colony forming units (CFU) of a multi-species probiotic (Bifidobacterium bifidum W23, Bifidobacterium lactis W51, Enterococcus faecium W54, Lactobacillus acidophilus W22, Lactobacillus brevis W63, and Lactococcus lactis W58) or placebo once per day for 12 weeks. The serum concentrations of tryptophan, phenylalanine and their primary catabolites kynurenine and tyrosine, as well as the concentration of the immune activation marker neopterin were determined at baseline and after 12 weeks, both at rest and immediately after exercise. Participants completed a daily diary to identify any infectious symptoms.

Results: After 12 weeks of treatment, post-exercise tryptophan levels were lowered by 11% (a significant change) in the PLA group compared to the concentrations measured before the intervention (p = 0.02), but remained unchanged in the PRO group. The ratio of subjects taking the placebo who experienced one or more URTI symptoms was increased 2.2-fold compared to those on probiotics (PLA 0.79, PRO 0.35; p = 0.02).

Conclusion: Data indicate reduced exercise-induced tryptophan degradation rates in the PRO group. Daily supplementation with probiotics limited exercise-induced drops in tryptophan levels and reduced the incidence of URTI, however, did not benefit athletic performance.

Keywords: intense exercise; kynurenine; probiotics; tryptophan; upper respiratory tract infections.

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Flow of participations through each stage of the trial.
Figure 2
Figure 2
Training loads for endurance training (h/week) over the study period for the participants who completed the study. Graph shows mean ± standard error of the mean (SEM); * p < 0.05 (Mann-Whitney U test). Asterisks depict weeks with significant differences between PRO (—) and PLA (···) groups. PRO: probiotics-supplemented group; PLA: placebo group.
Figure 3
Figure 3
Resting energy expenditure (REE; (kcal/day)) in trained athletes before and after 12 weeks of treatment. PRO: probiotics-supplemented group (n = 14); PLA: placebo group (n = 15). Graph shows mean + SEM; * p < 0.05 (ANOVA).
Figure 4
Figure 4
Tryptophan concentrations before and after exhaustive exercise in the probiotic (n = 14) and placebo (n = 15) group of trained athletes before and after 12 weeks of treatment (four blood draws per athlete). Graph shows mean ± SEM; * p < 0.05: Wilcoxon, # p < 0.05: week 0, before exercise placebo vs. probiotics: Mann-Whitney-U, n.s. = not statistically significant.
Figure 5
Figure 5
Incidence of upper respiratory tract infections (URTIs) in trained athletes before and after 12 weeks of treatment. The share of subjects on placebo (gray columns, 0.79) who experienced 1 or more URTI symptoms was 2.2-fold greater than those on probiotics (black columns, 0.35; * p = 0.016).

References

    1. Nieman D.C., Henson D.A., Austin M.D., Sha W. Upper respiratory tract infection is reduced in physically fit and active adults. Br. J. Sports Med. 2011;45:987–992. doi: 10.1136/bjsm.2010.077875.
    1. Gleeson M., Bishop N.C. URI in athletes: Are mucosal immunity and cytokine responses key risk factors? Exerc. Sport Sci. Rev. 2013;41:148–153. doi: 10.1097/JES.0b013e3182956ead.
    1. Walsh N.P., Gleeson M., Shephard R.J., Gleeson M., Woods J.A., Bishop N.C., Fleshner M., Green C., Pedersen B.K., Hoffman-Goetz L., et al. Position statement. Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011;17:6–63.
    1. Nieman D.C. Immune response to heavy exertion. J. Appl. Physiol. 1997;82:1385–1394.
    1. He C.S., Bishop N.C., Handzlik M.K., Muhamad A.S., Gleeson M. Sex differences in upper respiratory symptoms prevalence and oral-respiratory mucosal immunity in endurance athletes. Exerc. Immunol. Rev. 2014;20:8–22.
    1. Fahlman M.M., Engels H.J. Mucosal IgA and URTI in American college football players: A year longitudinal study. Med. Sci. Sports Exerc. 2005;37:374–380. doi: 10.1249/01.MSS.0000155432.67020.88.
    1. Gleeson M., McDonald W.A., Pyne D.B., Cripps A.W., Francis J.L., Fricker P.A., Clancy R.L. Salivary IgA levels and infection risk in elite swimmers. Med. Sci. Sports Exerc. 1999;31:67–73. doi: 10.1097/00005768-199901000-00012.
    1. Neville V., Gleeson M., Folland J.P. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med. Sci. Sports Exerc. 2008;40:1228–1236. doi: 10.1249/MSS.0b013e31816be9c3.
    1. Lancaster G.I., Halson S.L., Khan Q., Drysdale P., Wallace F., Jeukendrup A.E., Drayson M.T., Gleeson M. Effects of acute exhaustive exercise and chronic exercise training on type 1 and type 2 T lymphocytes. Exerc. Immunol. Rev. 2004;10:91–106.
    1. Sprenger H., Jacobs C., Nain M., Gressner A.M., Prinz H., Wesemann W., Gemsa D. Enhanced release of cytokines, interleukin-2 receptors, and neopterin after long-distance running. Clin. Immunol. Immunopathol. 1992;63:188–195. doi: 10.1016/0090-1229(92)90012-D.
    1. Tilz G.P., Domej W., Diez-Ruiz A., Weiss G., Brezinschek R., Brezinschek H.P., Hüttl E., Pristautz H., Wachter H., Fuchs D. Increased immune activation during and after physical exercise. Immunobiology. 1993;188:194–202. doi: 10.1016/S0171-2985(11)80497-3.
    1. Strasser B., Gostner J.M., Fuchs D. Mood, food, and cognition: Role of tryptophan and serotonin. Curr. Opin. Clin. Nutr. Metab. Care. 2016;19:55–61. doi: 10.1097/MCO.0000000000000237.
    1. Stone T.W., Perkins M.N. Quinolinic acid: A potent endogenous excitant at amino acid receptors in CNS. Eur. J. Pharmacol. 1981;72:411–412. doi: 10.1016/0014-2999(81)90587-2.
    1. Chen Y., Guillemin G.J. Kynurenine pathway metabolites in humans: Disease and healthy states. Int. J. Tryptophan Res. 2009;2:1–19.
    1. Strasser B., Geiger D., Schauer M., Gatterer H., Burtscher M., Fuchs D. Effects of exhaustive aerobic exercise on tryptophan-kynurenine metabolism in trained athletes. PLoS ONE. 2016;11:e0153617. doi: 10.1371/journal.pone.0153617.
    1. Strasser B., Sperner-Unterweger B., Fuchs D., Gostner J.M. Mechanisms of Inflammation-Associated Depression: Immune Influences on Tryptophan and Phenylalanine Metabolisms. Curr. Top. Behav. Neurosci. 2016 in press.
    1. Jenkins T.A., Nguyen J.C., Polglaze K.E., Bertrand P.P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016;8 doi: 10.3390/nu8010056.
    1. Evans J.M., Morris L.S., Marchesi J.R. The gut microbiome: The role of a virtual organ in the endocrinology of the host. J. Endocrinol. 2013;218:R37–R47. doi: 10.1530/JOE-13-0131.
    1. Leblhuber F., Geisler S., Steiner K., Fuchs D., Schütz B. Elevated fecal calprotectin in patients with Alzheimer’s dementia indicates leaky gut. J. Neural Transm. 2015;122:1319–1322. doi: 10.1007/s00702-015-1381-9.
    1. Bermon S., Petriz B., Kajėnienė A., Prestes J., Castell L., Franco O.L. The microbiota: An exercise immunology perspective. Exerc. Immunol. Rev. 2015;21:70–79.
    1. Cerdá B., Pérez M., Pérez-Santiago J.D., Tornero-Aguilera J.F., González-Soltero R., Larrosa M. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front. Physiol. 2016;7:51. doi: 10.3389/fphys.2016.00051.
    1. Gleeson M., McFarlin B., Flynn M. Exercise and Toll-like receptors. Exerc. Immunol. Rev. 2006;12:34–53.
    1. Matteoli G., Mazzini E., Iliev I.D., Mileti E., Fallarino F., Puccetti P., Chieppa M., Rescigno M. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut. 2010;59:595–604. doi: 10.1136/gut.2009.185108.
    1. Nagata S., Asahara T., Wang C., Suyama Y., Chonan O., Takano K., Daibou M., Takahashi T., Nomoto K., Yamashiro Y. The Effectiveness of Lactobacillus Beverages in Controlling Infections among the Residents of an Aged Care Facility: A Randomized Placebo-Controlled Double-Blind Trial. Ann. Nutr. Metab. 2016;68:51–59. doi: 10.1159/000442305.
    1. Wang Y., Li X., Ge T., Xiao Y., Liao Y., Cui Y., Zhang Y., Ho W., Yu G., Zhang T. Probiotics for prevention and treatment of respiratory tract infections in children: A systematic review and meta-analysis of randomized controlled trials. Medicine. 2016;95:e4509. doi: 10.1097/MD.0000000000004509.
    1. O’Sullivan O., Cronin O., Clarke S.F., Murphy E.F., Molloy M.G., Shanahan F., Cotter P.D. Exercise and the microbiota. Gut Microbes. 2015;6:131–136. doi: 10.1080/19490976.2015.1011875.
    1. Clarke S.F., Murphy E.F., O’Sullivan O., Lucey A.J., Humphreys M., Hogan A., Hayes P., O’Reilly M., Jeffery I.B., Wood-Martin R., et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–1920. doi: 10.1136/gutjnl-2013-306541.
    1. Jäger R., Purpura M., Stone J.D., Turner S.M., Anzalone A.J., Eimerbrink M.J., Pane M., Amoruso A., Rowlands D.S., Oliver J.M. Probiotic Streptococcus thermophilus FP4 and Bifidobacterium breve BR03 Supplementation Attenuates Performance and Range-of-Motion Decrements Following Muscle Damaging Exercise. Nutrients. 2016;8:642. doi: 10.3390/nu8100642.
    1. Lamprecht M., Bogner S., Schippinger G., Steinbauer K., Fankhauser F., Hallstroem S., Schuetz B., Greilberger J.F. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2012;9:45. doi: 10.1186/1550-2783-9-45.
    1. Cox A.J., Pyne D.B., Saunders P.U., Fricker P.A. Oral administration of the probiotic Lactobacillus fermentum VRI-003 and mucosal immunity in endurance athletes. Br. J. Sports Med. 2010;44:222–226. doi: 10.1136/bjsm.2007.044628.
    1. Gleeson M., Bishop N.C., Oliveira M., Tauler P. Daily probiotic’s (Lactobacillus casei Shirota) reduction of infection incidence in athletes. Int. J. Sport Nutr. Exerc. Metab. 2011;21:55–64. doi: 10.1123/ijsnem.21.1.55.
    1. Haywood B.A., Black K.E., Baker D., McGarvey J., Healey P., Brown R.C. Probiotic supplementation reduces the duration and incidence of infections but not severity in elite rugby union players. J. Sci. Med. Sport. 2014;17:356–360. doi: 10.1016/j.jsams.2013.08.004.
    1. West N.P., Pyne D.B., Peake J.M., Cripps A.W. Probiotics, immunity and exercise: A review. Exerc. Immunol. Rev. 2009;15:107–126.
    1. Edvardsen E., Scient C., Hansen B.H., Holme I.M., Dyrstad S.M., Anderssen S.A. Reference values for cardiorespiratory response and fitness on the treadmill in a 20- to 85-year-old population. Chest. 2013;144:241–248. doi: 10.1378/chest.12-1458.
    1. Faulhaber M., Gatterer H., Haider T., Patterson C., Burtscher M. Intermittent hypoxia does not affect endurance performance at moderate altitude in well-trained athletes. J. Sports Sci. 2010;28:513–519. doi: 10.1080/02640410903581588.
    1. Widner B., Werner E.R., Schennach H., Wachter H., Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin. Chem. 1997;43:2424–2426.
    1. Neurauter G., Scholl-Bürgi S., Haara A., Geisler S., Mayersbach P., Schennach H., Fuchs D. Simultaneous measurement of phenylalanine and tyrosine by high performance liquid chromatography (HPLC) with fluorescence detection. Clin. Biochem. 2013;46:1848–1851. doi: 10.1016/j.clinbiochem.2013.10.015.
    1. Geisler S., Mayersbach P., Becker K., Schennach H., Fuchs D., Gostner J.M. Serum tryptophan, kynurenine, phenylalanine, tyrosine and neopterin concentrations in 100 healthy blood donors. Pteridines. 2015;26:31–36. doi: 10.1515/pterid-2014-0015.
    1. Cohen J.W. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Erlbaum Associates Publishers; Mahwah, NJ, USA: 1988. pp. 284–287.
    1. Areces F., González-Millán C., Salinero J.J., Abian-Vicen J., Lara B., Gallo-Salazar C., Ruiz-Vicente D., Del Coso J. Changes in serum free amino acids and muscle fatigue experienced during a half-ironman triathlon. PLoS ONE. 2015;10:e0138376. doi: 10.1371/journal.pone.0138376.
    1. Schlittler M., Goiny M., Agudelo L.Z., Venckunas T., Brazaitis M., Skurvydas A., Kamandulis S., Ruas J.L., Erhardt S., Westerblad H., et al. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. Am. J. Physiol. Cell Physiol. 2016;310:C836–C840. doi: 10.1152/ajpcell.00053.2016.
    1. Meeusen R. Exercise, nutrition and the brain. Sports Med. 2014;44(Suppl. 1):S47–S56. doi: 10.1007/s40279-014-0150-5.
    1. Agudelo L.Z., Femenía T., Orhan F., Porsmyr-Palmertz M., Goiny M., Martinez-Redondo V., Correia J.C., Izadi M., Bhat M., Schuppe-Koistinen I., et al. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell. 2014;159:33–45. doi: 10.1016/j.cell.2014.07.051.
    1. Desbonnet L., Garrett L., Clarke G., Bienenstock J., Dinan T.G. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 2008;43:164–174. doi: 10.1016/j.jpsychires.2008.03.009.
    1. Hao Q., Dong B.R., Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst. Rev. 2015;2:CD006895.
    1. Pyne D.B., West N.P., Cox A.J., Cripps A.W. Probiotics supplementation for athletes—Clinical and physiological effects. Eur. J. Sport Sci. 2015;15:63–72. doi: 10.1080/17461391.2014.971879.
    1. West N.P., Pyne D.B., Cripps A.W., Hopkins W.G., Eskesen D.C., Jairath A., Christophersen C.T., Conlon M.A., Fricker P.A. Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: A randomised control trial in athletes. Nutr. J. 2011;10:30. doi: 10.1186/1475-2891-10-30.
    1. Gleeson M. Nutritional support to maintain proper immune status during intense training. Nestle Nutr. Inst. Workshop Ser. 2013;75:85–97.
    1. Ho P.M., Bryson C.L., Rumsfeld J.S. Medication adherence: Its importance in cardiovascular outcomes. Circulation. 2009;119:3028–3035. doi: 10.1161/CIRCULATIONAHA.108.768986.
    1. Carretti N., Florio P., Bertolin A., Costa C.V., Allegri G., Zilli G. Serum fluctuations of total and free tryptophan levels during the menstrual cycle are related to gonadotrophins and reflect brain serotonin utilization. Hum. Reprod. 2005;20:1548–1553. doi: 10.1093/humrep/deh795.

Source: PubMed

3
Tilaa