Mapping the mechanisms of transcranial alternating current stimulation: a pathway from network effects to cognition

Ruairidh M Battleday, Timothy Muller, Michael S Clayton, Roi Cohen Kadosh, Ruairidh M Battleday, Timothy Muller, Michael S Clayton, Roi Cohen Kadosh

No abstract available

Keywords: cognitive enhancement; neuroenhancement; non-invasive brain stimulation; oscillations; oscillatory activity; transcranial alternating current stimulation; transcranial electrical stimulation.

Figures

Figure 1
Figure 1
Oscillations in electrophysiological recordings and the effects of tACS on network activity. (A) Electrophysiological recordings can reveal important information about the brain, in both resting and task-oriented states. Left: the electroencephalogram, which displays electrical signals from a series of electrodes placed on the scalp. Right: when electrophysiological recordings are filtered oscillatory patterns emerge in a task-, area-, and state-dependent manner, typically divided into delta (0.5–4 Hz), theta (4–7 Hz), alpha (7–12 Hz), beta (12–30 Hz), and gamma (30–100+ Hz) frequency bands. (B) The interaction between tACS and neural firing (shown through both local field potential fluctuations and changes in neural firing patterns). In animals, theoretical, and human work, tACS has been found to increase the power of oscillations and cause them to synchronize their fluctuations with incoming stimulation (see text).

References

    1. Insel TR. Assessing the economic costs of serious mental illness. Am J Psychiatry (2008) 165:663–510.1176/appi.ajp.2008.08030366
    1. Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul (2008) 1:97–105.10.1016/j.brs.2007.10.001
    1. Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol (2014) 24:333–9.10.1016/j.cub.2013.12.041
    1. Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol (2012) 22:1314–8.10.1016/j.cub.2012.05.021
    1. Pahor A, Jaušovec N. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence. Int J Psychophysiol (2014) 93:322–31.10.1016/j.ijpsycho.2014.06.015
    1. Santarnecchi E, Polizzotto NR, Godone M, Giovannelli F, Feurra M, Matzen L, et al. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr Biol (2013) 23:1449–53.10.1016/j.cub.2013.06.022
    1. Kar K, Krekelberg B. Transcranial alternating current stimulation attenuates visual motion adaptation. J Neurosci (2014) 34:7334–40.10.1523/JNEUROSCI.5248-13.2014
    1. Brittain J-S, Probert-Smith P, Aziz TZ, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol (2013) 23:436–40.10.1016/j.cub.2013.01.068
    1. Fedorov A, Chibisova Y, Szymaszek A, Alexandrov M, Gall C, Sabel BA. Non-invasive alternating current stimulation induces recovery from stroke. Restor Neurol Neurosci (2010) 28:825–33.10.3233/RNN-2010-0580
    1. Wang X-J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev (2010) 90:1195–268.10.1152/physrev.00035.2008
    1. Jensen OMA. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci (2010) 4:186.10.3389/fnhum.2010.00186
    1. Daitch AL, Sharma M, Roland JL, Astafiev SV, Bundy DT, Gaona CM, et al. Frequency-specific mechanism links human brain networks for spatial attention. Proc Natl Acad Sci U S A (2013) 110(48):19585–90.10.1073/pnas.1307947110
    1. Salazar RF, Dotson NM, Bressler SL, Gray CM. Content-specific fronto-parietal synchronization during visual working memory. Science (2012) 338:1097–100.10.1126/science.1224000
    1. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci (2001) 21:1033–8.
    1. Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch G, Litt B. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain (2004) 127:1496–506.10.1093/brain/awh149
    1. Montez T, Poil S-S, Jones BF, Manshanden I, Verbunt JP, van Dijk BW, et al. Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proc Natl Acad Sci U S A (2009) 106:1614–9.10.1073/pnas.0811699106
    1. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci (2010) 11:100–13.10.1038/nrn2774
    1. Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci (2010) 30:15067–79.10.1523/JNEUROSCI.2059-10.2010
    1. Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci (2013) 7:687.10.3389/fnhum.2013.00687
    1. De Graaf TA, Gross J, Paterson G, Rusch T, Sack AT, Thut G. Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation. PLoS One (2013) 8:e60035.10.1371/journal.pone.0060035
    1. Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron (2010) 67:129–43.10.1016/j.neuron.2010.06.005
    1. Ali MM, Sellers KK, Fröhlich F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci (2013) 33:11262–75.10.1523/JNEUROSCI.5867-12.2013
    1. Radman T, Su Y, An JH, Parra LC, Bikson M. Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci (2007) 27:3030–6.10.1523/JNEUROSCI.0095-07.2007
    1. Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, et al. Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci (2010) 30:11476–85.10.1523/JNEUROSCI.5252-09.2010
    1. Deans JK, Powell AD, Jefferys JGR. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol (2007) 583:555–65.10.1113/jphysiol.2007.137711
    1. Voss U, Holzmann R, Hobson A, Paulus W, Koppehele-Gossel J, Klimke A, et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci (2014) 17:810–2.10.1038/nn.3719
    1. Strüber D, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr (2014) 27:158–71.10.1007/s10548-013-0294-x
    1. Feurra M, Bianco G, Santarnecchi E, Del Testa M, Rossi A, Rossi S. Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci (2011) 31:12165–70.10.1523/JNEUROSCI.0978-11.2011
    1. Feurra M, Paulus W, Walsh V, Kanai R. Frequency specific modulation of human somatosensory cortex. Front Psychol (2011) 2:13.10.3389/fpsyg.2011.00013
    1. Kanai R, Chaieb L, Antal A, Walsh V, Paulus W. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol (2008) 18:1839–4310.1016/j.cub.2008.10.027
    1. Schutter DJLG, Hortensius R. Retinal origin of phosphenes to transcranial alternating current stimulation. Clin Neurophysiol (2010) 121:1080–4.10.1016/j.clinph.2009.10.038
    1. Schwiedrzik CM. Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation. Front Integr Neurosci (2009) 3:6.10.3389/neuro.07.006.2009
    1. Terhune DB, Song SM, Cohen Kadosh R. Transcranial alternating current stimulation reveals atypical 40 Hz phosphene thresholds in synaesthesia. Cortex (2015) 63:267–7010.1016/j.cortex.2014.09.006
    1. Kanai R, Paulus W, Walsh V. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol (2010) 121:1551–4.10.1016/j.clinph.2010.03.022
    1. Buzsaki G. Rhythms of the Brain. New York: Oxford University Press; (2006).
    1. Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci (2009) 29:7679–85. 10.1523/JNEUROSCI.0445-09.2009
    1. Merlet I, Birot G, Salvador R, Molaee-Ardekani B, Mekonnen A, Soria-Frish A, et al. From oscillatory transcranial current stimulation to scalp EEG changes: a biophysical and physiological modeling study. PLoS One (2013) 8:e57330.10.1371/journal.pone.0057330
    1. Schmidt SL, Iyengar AK, Foulser AA, Boyle MR, Fröhlich F. Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimul (2014).10.1016/j.brs.2014.07.033
    1. Longtin A. Stochastic resonance in neuron models. J Stat Phys (1993) 70:309–2710.1007/BF01053970
    1. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci (2005) 9:474–80.10.1016/j.tics.2005.08.011
    1. Azouz R, Gray CM. Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron (2003) 37:513–23.10.1016/S0896-6273(02)01186-8
    1. Moliadze V, Atalay D, Antal A, Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul (2012) 5:505–11.10.1016/j.brs.2011.11.004
    1. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol (2004) 557:175–90.10.1113/jphysiol.2003.055772
    1. Miranda PC, Mekonnen A, Salvador R, Ruffini G. The electric field in the cortex during transcranial current stimulation. Neuroimage (2013) 70:48–58.10.1016/j.neuroimage.2012.12.034
    1. Brignani D, Ruzzoli M, Mauri P, Miniussi C. Is transcranial alternating current stimulation effective in modulating brain oscillations? PLoS One (2013) 8:e56589.10.1371/journal.pone.0056589
    1. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends Cogn Sci (2004) 8:418–2510.1016/j.tics.2004.07.008
    1. Jung RE, Haier RJ. The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci (2007) 30:135–54.10.1017/S0140525X07001185
    1. Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One (2010) 5:e13766.10.1371/journal.pone.0013766
    1. Fröhlich F. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation. Dialogues Clin Neurosci (2014) 16:93–102.

Source: PubMed

3
Tilaa