Strategies for detection of Plasmodium species gametocytes

Rahel Wampfler, Felistas Mwingira, Sarah Javati, Leanne Robinson, Inoni Betuela, Peter Siba, Hans-Peter Beck, Ivo Mueller, Ingrid Felger, Rahel Wampfler, Felistas Mwingira, Sarah Javati, Leanne Robinson, Inoni Betuela, Peter Siba, Hans-Peter Beck, Ivo Mueller, Ingrid Felger

Abstract

Carriage and density of gametocytes, the transmission stages of malaria parasites, are determined for predicting the infectiousness of humans to mosquitoes. This measure is used for evaluating interventions that aim at reducing malaria transmission. Gametocytes need to be detected by amplification of stage-specific transcripts, which requires RNA-preserving blood sampling. For simultaneous, highly sensitive quantification of both, blood stages and gametocytes, we have compared and optimized different strategies for field and laboratory procedures in a cross sectional survey in 315 5-9 yr old children from Papua New Guinea. qRT-PCR was performed for gametocyte markers pfs25 and pvs25, Plasmodium species prevalence was determined by targeting both, 18S rRNA genes and transcripts. RNA-based parasite detection resulted in a P. falciparum positivity of 24.1%; of these 40.8% carried gametocytes. P. vivax positivity was 38.4%, with 38.0% of these carrying gametocytes. Sensitivity of DNA-based parasite detection was substantially lower with 14.1% for P. falciparum and 19.6% for P. vivax. Using the lower DNA-based prevalence of asexual stages as a denominator increased the percentage of gametocyte-positive infections to 59.1% for P. falciparum and 52.4% for P. vivax. For studies requiring highly sensitive and simultaneous quantification of sexual and asexual parasite stages, 18S rRNA transcript-based detection saves efforts and costs. RNA-based positivity is considerably higher than other methods. On the other hand, DNA-based parasite quantification is robust and permits comparison with other globally generated molecular prevalence data. Molecular monitoring of low density asexual and sexual parasitaemia will support the evaluation of effects of up-scaled antimalarial intervention programs and can also inform about small scale spatial variability in transmission intensity.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flow diagram of molecular analyses…
Figure 1. Flow diagram of molecular analyses performed for detection of asexual and sexual parasite stages of P. vivax and P. falciparum in field samples from PNG.
Red and blue frames indicate assays done on DNA and on RNA, respectively. Orange and green boxes are P. falciparum and P. vivax-specific assays, respectively. P. malariae and P. ovale assays are not included in the diagram.
Figure 2. DNA- versus RNA-based quantification of…
Figure 2. DNA- versus RNA-based quantification of Plasmodium parasites by qPCR and qRT-PCR of 18S rRNA genes or transcripts in comparison to light microscopy (LM).
P. falciparum (upper panel) and P. vivax (lower panel). Boxed values indicate the correlation coefficient (r2) and the conversion functions extracted from these data. All correlation coefficients (r2) were significant (p-value < 0.001).
Figure 3. Comparison of two blood sampling…
Figure 3. Comparison of two blood sampling strategies for measuring gametocyte prevalence rates.
(A) P. falciparum, (B) P. vivax. Gametocyte positivity (left panel) and transcript copy numbers (right panel) are shown for RNAprotect solution versus filter paper soaked in TRIzol. Only samples were compared for which both measurements were available.
Figure 4. Gametocyte trend line generated with…
Figure 4. Gametocyte trend line generated with 3D7 P. falciparum in vitro culture for converting pfs25 transcript copy numbers into gametocyte counts.
Dashed lines indicate 95% confidence interval of intercept.
Figure 5. Effect of extended storage time…
Figure 5. Effect of extended storage time on pfs25 transcripts.
20 samples were chosen to represent a wide range of transcript copy numbers at start of the 2 yr storage period. The initial copy numbers (black bars) are shown next to copy number detected 2 yrs later in the same RNA sample (white bars).

References

    1. Carter R, Mendis KN, Miller LH, Molineaux L, Saul A (2000) Malaria transmission-blocking vaccines - how can their development be supported? Nat Med 6: 241-244. doi:10.1038/73062. PubMed: .
    1. Ouédraogo AL, Bousema T, Schneider P, de Vlas SJ, Ilboudo-Sanogo E et al. (2009) Substantial contribution of submicroscopical Plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. PLOS ONE 4: e8410. doi:10.1371/journal.pone.0008410. PubMed: .
    1. Churcher TS, Bousema T, Walker M, Drakeley C, Schneider P et al. (2013) Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. Elife 2: e00626. doi:10.7554/eLife.00626. PubMed: .
    1. Babiker HA, Abdel-Wahab A, Ahmed S, Suleiman S, Ranford-Cartwright L et al. (1999) Detection of low level Plasmodium falciparum gametocytes using reverse transcriptase polymerase chain reaction. Mol Biochem Parasitol 99: 143-148. doi:10.1016/S0166-6851(98)00175-3. PubMed: .
    1. Ouédraogo AL, Bousema T, de Vlas SJ, Cuzin-Ouattara N, Verhave JP et al. (2010) The plasticity of Plasmodium falciparum gametocytaemia in relation to age in Burkina Faso. Malar J 9: 281. doi:10.1186/1475-2875-9-281. PubMed: .
    1. Maeno Y, Nakazawa S, Dao lD, Yamamoto N, Giang ND et al. (2008) A dried blood sample on filter paper is suitable for detecting Plasmodium falciparum gametocytes by reverse transcription polymerase chain reaction. Acta Trop 107: 121-127.
    1. Mlambo G, Vasquez Y, LeBlanc R, Sullivan D, Kumar N (2008) A filter paper method for the detection of Plasmodium falciparum gametocytes by reverse transcription polymerase chain reaction. Am J Trop Med Hyg 78: 114-116. PubMed: .
    1. Jones S, Sutherland CJ, Hermsen C, Arens T, Teelen K et al. (2012) Filter paper collection of Plasmodium falciparum mRNA for detecting low-density gametocytes. Malar J 11: 266. doi:10.1186/1475-2875-11-266. PubMed: .
    1. Kuamsab N, Putaporntip C, Pattanawong U, Jongwutiwes S (2012) Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR. Malar J 11: 190. doi:10.1186/1475-2875-11-190. PubMed: .
    1. Schneider P, Schoone G, Schallig H, Verhage D, Telgt D et al. (2004) Quantification of Plasmodium falciparum gametocytes in differential stages of development by quantitative nucleic acid sequence-based amplification. Mol Biochem Parasitol 137: 35-41. doi:10.1016/j.molbiopara.2004.03.018. PubMed: .
    1. Beurskens M, Mens P, Schallig H, Syafruddin D, Asih PB et al. (2009) Quantitative determination of Plasmodium vivax gametocytes by real-time quantitative nucleic acid sequence-based amplification in clinical samples. Am J Trop Med Hyg 81: 366-369. PubMed: .
    1. Pritsch M, Wieser A, Soederstroem V, Poluda D, Eshetu T et al. (2012) Stability of gametocyte-specific Pfs25-mRNA in dried blood spots on filter paper subjected to different storage conditions. Malar J 11: 138. doi:10.1186/1475-2875-11-138. PubMed: .
    1. Müller I, Bockarie M, Alpers MP, Smith T (2003) The epidemiology of malaria in Papua New Guinea. Trends Parasitol 19: 253-259. doi:10.1016/S1471-4922(03)00091-6. PubMed: .
    1. Genton B, Al-Yaman F, Beck HP, Hii J, Mellor S et al. (1995) The epidemiology of malaria in the Wosera area, East Sepik Province, Papua New Guinea, in preparation for vaccine trials. II. Mortality and morbidity. Ann Trop Med Parasitol 89: 377-390. PubMed: .
    1. Cattani JA, Moir JS, Gibson FD, Ginny M, Paino J et al. (1986) Small-area variations in the epidemiology of malaria in Madang Province. PNG Med J 29: 11-17. PubMed: .
    1. Hii JL, Smith T, Mai A, Mellor S, Lewis D et al. (1997) Spatial and temporal variation in abundance of Anopheles (Diptera:Culicidae) in a malaria endemic area in Papua New Guinea. J Med Entomol 34: 193-205. PubMed: .
    1. Li J, Gutell RR, Damberger SH, Wirtz RA, Kissinger JC et al. (1997) Regulation and trafficking of three distinct 18 S ribosomal RNAs during development of the malaria parasite. J Mol Biol 269: 203-213. doi:10.1006/jmbi.1997.1038. PubMed: .
    1. Nishimoto Y, Arisue N, Kawai S, Escalante AA, Horii T et al. (2008) Evolution and phylogeny of the heterogeneous cytosolic SSU rRNA genes in the genus Plasmodium. Mol Phylogenet Evol 47: 45-53. doi:10.1016/j.ympev.2008.01.031. PubMed: .
    1. Prajapati SK, Joshi H, Dua VK (2011) Antigenic repertoire of Plasmodium vivax transmission-blocking vaccine candidates from the Indian subcontinent. Malar J 10: 111. doi:10.1186/1475-2875-10-111. PubMed: .
    1. Fivelman QL, McRobert L, Sharp S, Taylor CJ, Saeed M et al. (2007) Improved synchronous production of Plasmodium falciparum gametocytes in vitro. Mol Biochem Parasitol 154: 119-123. doi:10.1016/j.molbiopara.2007.04.008. PubMed: .
    1. Ponnudurai T, Lensen AH, Leeuwenberg AD, Meuwissen JH (1982) Cultivation of fertile Plasmodium falciparum gametocytes in semi-automated systems. 1. Static cultures. Trans R Soc Trop Med Hyg 76: 812-818. doi:10.1016/0035-9203(82)90116-X. PubMed: .
    1. Kariuki MM, Kiaira JK, Mulaa FK, Mwangi JK, Wasunna MK et al. (1998) Plasmodium falciparum: purification of the various gametocyte developmental stages from in vitro-cultivated parasites. Am J Trop Med Hyg 59: 505-508. PubMed: .
    1. R Development Core Team (2011) R: A language and environment for statistical computing, Vienna, Austria ISBN 3-900051-07-0. Available: . Vienna, Austria: R Foundation for Statistical Computing.
    1. Rosanas-Urgell A, Mueller D, Betuela I, Barnadas C, Iga J et al. (2010) Comparison of diagnostic methods for the detection and quantification of the four sympatric Plasmodium species in field samples from Papua New Guinea. Malar J 9: 361: 1475-2875-9-361 PubMed: . 10.1186/1475-2875-9-361 PubMed:
    1. Genton B, Al-Yaman F, Beck HP, Hii J, Mellor S et al. (1995) The epidemiology of malaria in the Wosera area, East Sepik Province, Papua New Guinea, in preparation for vaccine trials. I. Malariometric indices and immunity. Ann Trop Med Parasitol 89: 359-376. PubMed: .
    1. Lima NF, Bastos MS, Ferreira MU (2012) Plasmodium vivax: reverse transcriptase real-time PCR for gametocyte detection and quantitation in clinical samples. Exp Parasitol 132: 348-354. doi:10.1016/j.exppara.2012.08.010. PubMed: .
    1. Schneider P, Bousema T, Omar S, Gouagna L, Sawa P et al. (2006) (Sub)microscopic Plasmodium falciparum gametocytaemia in Kenyan children after treatment with sulphadoxine-pyrimethamine monotherapy or in combination with artesunate. Int J Parasitol 36: 403-408. doi:10.1016/j.ijpara.2006.01.002. PubMed: .
    1. Murphy SC, Prentice JL, Williamson K, Wallis CK, Fang FC et al. (2012) Real-time quantitative reverse transcription PCR for monitoring of blood-stage Plasmodium falciparum infections in malaria human challenge trials. Am J Trop Med Hyg 86: 383-394. doi:10.4269/ajtmh.2012.10-0658. PubMed: .
    1. Baird JK, Purnomo, Basri H, Bangs MJ, Andersen EM et al. (1993) Age-specific prevalence of Plasmodium falciparum among six populations with limited histories of exposure to endemic malaria. Am J Trop Med Hyg 49: 707-719. PubMed: .
    1. Tiono AB, Ouédraogo A, Ogutu B, Diarra A, Coulibaly S et al. (2013) A controlled, parallel, cluster-randomized trial of community-wide screening and treatment of asymptomatic carriers of Plasmodium falciparum in Burkina Faso. Malar J 12: 79. doi:10.1186/1475-2875-12-79. PubMed: .
    1. Sinden RE, Blagborough AM, Churcher T, Ramakrishnan C, Biswas S et al. (2012) The design and interpretation of laboratory assays measuring mosquito transmission of Plasmodium. Trends Parasitol 28: 457-465. doi:10.1016/j.pt.2012.07.005. PubMed: .

Source: PubMed

3
Tilaa