Diagnostic Performance of In-Procedure Angiography-Derived Quantitative Flow Reserve Compared to Pressure-Derived Fractional Flow Reserve: The FAVOR II Europe-Japan Study

Jelmer Westra, Birgitte Krogsgaard Andersen, Gianluca Campo, Hitoshi Matsuo, Lukasz Koltowski, Ashkan Eftekhari, Tommy Liu, Luigi Di Serafino, Domenico Di Girolamo, Javier Escaned, Holger Nef, Christoph Naber, Marco Barbierato, Shengxian Tu, Omeed Neghabat, Morten Madsen, Matteo Tebaldi, Toru Tanigaki, Janusz Kochman, Samer Somi, Giovanni Esposito, Giuseppe Mercone, Hernan Mejia-Renteria, Federico Ronco, Hans Erik Bøtker, William Wijns, Evald Høj Christiansen, Niels Ramsing Holm, Jelmer Westra, Birgitte Krogsgaard Andersen, Gianluca Campo, Hitoshi Matsuo, Lukasz Koltowski, Ashkan Eftekhari, Tommy Liu, Luigi Di Serafino, Domenico Di Girolamo, Javier Escaned, Holger Nef, Christoph Naber, Marco Barbierato, Shengxian Tu, Omeed Neghabat, Morten Madsen, Matteo Tebaldi, Toru Tanigaki, Janusz Kochman, Samer Somi, Giovanni Esposito, Giuseppe Mercone, Hernan Mejia-Renteria, Federico Ronco, Hans Erik Bøtker, William Wijns, Evald Høj Christiansen, Niels Ramsing Holm

Abstract

Background: Quantitative flow ratio (QFR) is a novel modality for physiological lesion assessment based on 3-dimensional vessel reconstructions and contrast flow velocity estimates. We evaluated the value of online QFR during routine invasive coronary angiography for procedural feasibility, diagnostic performance, and agreement with pressure-wire-derived fractional flow reserve (FFR) as a gold standard in an international multicenter study.

Methods and results: FAVOR II E-J (Functional Assessment by Various Flow Reconstructions II Europe-Japan) was a prospective, observational, investigator-initiated study. Patients with stable angina pectoris were enrolled in 11 international centers. FFR and online QFR computation were performed in all eligible lesions. An independent core lab performed 2-dimensional quantitative coronary angiography (2D-QCA) analysis of all lesions assessed with QFR and FFR. The primary comparison was sensitivity and specificity of QFR compared with 2D-QCA using FFR as a reference standard. A total of 329 patients were enrolled. Paired assessment of FFR, QFR, and 2D-QCA was available for 317 lesions. Mean FFR, QFR, and percent diameter stenosis were 0.83±0.09, 0.82±10, and 45±10%, respectively. FFR was ≤0.80 in 104 (33%) lesions. Sensitivity and specificity by QFR was significantly higher than by 2D-QCA (sensitivity, 86.5% (78.4-92.4) versus 44.2% (34.5-54.3); P<0.001; specificity, 86.9% (81.6-91.1) versus 76.5% (70.3-82.0); P=0.002). Area under the receiver curve was significantly higher for QFR compared with 2D-QCA (area under the receiver curve, 0.92 [0.89-0.96] versus 0.64 [0.57-0.70]; P<0.001). Median time to QFR was significantly lower than median time to FFR (time to QFR, 5.0 minutes [interquartile range, -6.1] versus time to FFR, 7.0 minutes [interquartile range, 5.0-10.0]; P<0.001).

Conclusions: Online computation of QFR in the catheterization laboratory is clinically feasible and is superior to angiographic assessment for evaluation of intermediary coronary artery stenosis using FFR as a reference standard.

Clinical trial registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02959814.

Keywords: fractional flow reserve; quantitative coronary angiography.

© 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

Figures

Figure 1
Figure 1
Study enrollment flow chart. FFR indicates fractional flow reserve; N, number of patients; QCA, quantitative coronary angiography; QFR, quantitative flow ratio; RCA, right coronary artery.
Figure 2
Figure 2
Sensitivity and specificity for QFR and 2D‐QCA with FFR as reference. QFR was superior to 2D‐QCA on sensitivity and specificity with FFR as reference standard. Diagnostic cutoffs: ≤0.80 for FFR and QFR; ≥50% DS for 2D‐QCA. 2D‐QCA indicates 2‐dimensional coronary angiography; QFR, quantitative flow ratio.
Figure 3
Figure 3
Per‐vessel level diagnostic performance. FFR≤0.80 was used as reference. 2D‐QCA indicates 2‐dimensional coronary angiography; AUC, area under the receiver operating curve; QFR, quantitative flow ratio.
Figure 4
Figure 4
Agreement between QFR and FFR. A good correlation (A) and agreement (B) of QFR and FFR was observed. Dashed lines in Bland–Altman plot illustrate mean difference ±2 SD. FFR indicates fractional flow reserve; QFR, quantitative flow ratio.
Figure 5
Figure 5
Comparison of time to FFR and time to QFR. FFR indicates fractional flow reserve; IQR, inter quartile range; m, minutes; QFR, quantitative flow ratio.

References

    1. Pothineni NV, Shah NS, Rochlani Y, Nairooz R, Raina S, Leesar MA, Uretsky BF, Hakeem A. U.S. trends in inpatient utilization of fractional flow reserve and percutaneous coronary intervention. J Am Coll Cardiol. 2016;67:732–733.
    1. Gotberg M, Cook CM, Sen S, Nijjer S, Escaned J, Davies JE. The evolving future of instantaneous wave‐free ratio and fractional flow reserve. J Am Coll Cardiol. 2017;70:1379–1402.
    1. Toth GG, Toth B, Johnson NP, De Vroey F, Di Serafino L, Pyxaras S, Rusinaru D, Di Gioia G, Pellicano M, Barbato E, Van Mieghem C, Heyndrickx GR, De Bruyne B, Wijns W. Revascularization decisions in patients with stable angina and intermediate lesions: results of the international survey on interventional strategy. Circ Cardiovasc Interv. 2014;7:751–759.
    1. Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G, Hink U, Schuchlenz HW, Feuchtner G, Gilard M, Andreini D, Jensen JM, Hadamitzky M, Chiswell K, Cyr D, Wilk A, Wang F, Rogers C, De Bruyne B; PLATFORM Investigators. Clinical outcomes of fractional flow reserve by computed tomographic angiography‐guided diagnostic strategies vs. Usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J. 2015;36:3359–3367.
    1. Morris PD, Ryan D, Morton AC, Lycett R, Lawford PV, Hose DR, Gunn JP. Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU‐1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study. JACC Cardiovasc Interv. 2013;6:149–157.
    1. Papafaklis MI, Muramatsu T, Ishibashi Y, Lakkas LS, Nakatani S, Bourantas CV, Ligthart J, Onuma Y, Echavarria‐Pinto M, Tsirka G, Kotsia A, Nikas DN, Mogabgab O, van Geuns RJ, Naka KK, Fotiadis DI, Brilakis ES, Garcia‐Garcia HM, Escaned J, Zijlstra F, Michalis LK, Serruys PW. Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire—fractional flow reserve. EuroIntervention. 2014;10:574–583.
    1. Kornowski R, Lavi I, Pellicano M, Xaplanteris P, Vaknin‐Assa H, Assali A, Valtzer O, Lotringer Y, De Bruyne B. Fractional flow reserve derived from routine coronary angiograms. J Am Coll Cardiol. 2016;68:2235–2237.
    1. Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Botker HE, Achenbach S; NXT Trial Study Group. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol. 2014;63:1145–1155.
    1. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK. Diagnosis of ischemia‐causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter discover‐flow (diagnosis of ischemia‐causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol. 2011;58:1989–1997.
    1. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308:1237–1245.
    1. Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M, Nef H, Tebaldi M, Murasato Y, Lansky A, Barbato E, van der Heijden LC, Reiber JH, Holm NR, Wijns W; FAVOR Pilot Trial Study Group . Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study. JACC Cardiovasc Interv. 2016;9:2024–2035.
    1. Xu B, Tu S, Qiao S, Qu X, Chen Y, Yang J, Guo L, Sun Z, Li Z, Tian F, Fang W, Chen J, Li W, Guan C, Holm NR, Wijns W, Hu S. Diagnostic accuracy of angiography‐based quantitative flow ratio measurements for online assessment of coronary stenosis. J Am Coll Cardiol. 2017;70:3077–3087.
    1. Abaci A, Oguzhan A, Eryol NK, Ergin A. Effect of potential confounding factors on the thrombolysis in myocardial infarction (TIMI) trial frame count and its reproducibility. Circulation. 1999;100:2219–2223.
    1. Toth GG, Johnson NP, Jeremias A, Pellicano M, Vranckx P, Fearon WF, Barbato E, Kern MJ, Pijls NH, De Bruyne B. Standardization of fractional flow reserve measurements. J Am Coll Cardiol. 2016;68:742–753.
    1. Westra J, Tu S, Winther S, Nissen L, Vestergaard MB, Andersen BK, Holck EN, Fox Maule C, Johansen JK, Andreasen LN, Simonsen JK, Zhang Y, Kristensen SD, Maeng M, Kaltoft A, Terkelsen CJ, Krusell LR, Jakobsen L, Reiber JHC, Lassen JF, Bottcher M, Botker HE, Christiansen EH, Holm NR. Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II Study (Wire‐Free Functional Imaging II). Circ Cardiovasc Imaging. 2018;11:e007107.
    1. Pellicano M, Lavi I, De Bruyne B, Vaknin‐Assa H, Assali A, Valtzer O, Lotringer Y, Weisz G, Almagor Y, Xaplanteris P, Kirtane AJ, Codner P, Leon MB, Kornowski R. Validation study of image‐based fractional flow reserve during coronary angiography. Circ Cardiovasc Interv. 2017;10:e005259.
    1. Morris PD, Silva Soto DA, Feher JFA, Rafiroiu D, Lungu A, Varma S, Lawford PV, Hose DR, Gunn JP. Fast virtual fractional flow reserve based upon steady‐state computational fluid dynamics analysis: results from the VIRTU‐Fast study. JACC Basic Transl Sci. 2017;2:434–446.
    1. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, Douglas PS, Foody JM, Gerber TC, Hinderliter AL, King SB III, Kligfield PD, Krumholz HM, Kwong RY, Lim MJ, Linderbaum JA, Mack MJ, Munger MA, Prager RL, Sabik JF, Shaw LJ, Sikkema JD, Smith CR Jr, Smith SC Jr, Spertus JA, Williams SV; American College of Cardiology Foundation, American Heart Association Task Force on Practice Guidelines, American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons . 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2012;60:e44–e164.
    1. Dattilo PB, Prasad A, Honeycutt E, Wang TY, Messenger JC. Contemporary patterns of fractional flow reserve and intravascular ultrasound use among patients undergoing percutaneous coronary intervention in the United States: insights from the national cardiovascular data registry. J Am Coll Cardiol. 2012;60:2337–2339.
    1. Jeremias A, Maehara A, Genereux P, Asrress KN, Berry C, De Bruyne B, Davies JE, Escaned J, Fearon WF, Gould KL, Johnson NP, Kirtane AJ, Koo BK, Marques KM, Nijjer S, Oldroyd KG, Petraco R, Piek JJ, Pijls NH, Redwood S, Siebes M, Spaan JA, van't Veer M, Mintz GS, Stone GW. Multicenter core laboratory comparison of the instantaneous wave‐free ratio and resting PD/PA with fractional flow reserve: the RESOLVE study. J Am Coll Cardiol. 2014;63:1253–1261.
    1. Petraco R, van de Hoef TP, Nijjer S, Sen S, van Lavieren MA, Foale RA, Meuwissen M, Broyd C, Echavarria‐Pinto M, Foin N, Malik IS, Mikhail GW, Hughes AD, Francis DP, Mayet J, Di Mario C, Escaned J, Piek JJ, Davies JE. Baseline instantaneous wave‐free ratio as a pressure‐only estimation of underlying coronary flow reserve: results of the JUSTIFY‐CFR study (Joined Coronary Pressure and Flow Analysis to Determine Diagnostic Characteristics of Basal and Hyperemic Indices of Functional Lesion Severity‐Coronary Flow Reserve). Circ Cardiovasc Interv. 2014;7:492–502.
    1. Petraco R, Park JJ, Sen S, Nijjer SS, Malik IS, Echavarria‐Pinto M, Asrress KN, Nam CW, Macias E, Foale RA, Sethi A, Mikhail GW, Kaprielian R, Baker CS, Lefroy D, Bellamy M, Al‐Bustami M, Khan MA, Gonzalo N, Hughes AD, Francis DP, Mayet J, Di Mario C, Redwood S, Escaned J, Koo BK, Davies JE. Hybrid iFR‐FFR decision‐making strategy: implications for enhancing universal adoption of physiology‐guided coronary revascularisation. EuroIntervention. 2013;8:1157–1165.
    1. Gotberg M, Christiansen EH, Gudmundsdottir IJ, Sandhall L, Danielewicz M, Jakobsen L, Olsson SE, Ohagen P, Olsson H, Omerovic E, Calais F, Lindroos P, Maeng M, Todt T, Venetsanos D, James SK, Karegren A, Nilsson M, Carlsson J, Hauer D, Jensen J, Karlsson AC, Panayi G, Erlinge D, Frobert O. Instantaneous wave‐free ratio versus fractional flow reserve to guide pci. N Engl J Med. 2017;376:1813–1823.
    1. Davies JE, Sen S, Dehbi HM, Al‐Lamee R, Petraco R, Nijjer SS, Bhindi R, Lehman SJ, Walters D, Sapontis J, Janssens L, Vrints CJ, Khashaba A, Laine M, Van Belle E, Krackhardt F, Bojara W, Going O, Harle T, Indolfi C, Niccoli G, Ribichini F, Tanaka N, Yokoi H, Takashima H, Kikuta Y, Erglis A, Vinhas H, Canas Silva P, Baptista SB, Alghamdi A, Hellig F, Koo BK, Nam CW, Shin ES, Doh JH, Brugaletta S, Alegria‐Barrero E, Meuwissen M, Piek JJ, van Royen N, Sezer M, Di Mario C, Gerber RT, Malik IS, Sharp AS, Talwar S, Tang K, Samady H, Altman J, Seto AH, Singh J, Jeremias A, Matsuo H, Kharbanda RK, Patel MR, Serruys P, Escaned J. Use of the instantaneous wave‐free ratio or fractional flow reserve in PCI. N Engl J Med. 2017;376:1824–1834.
    1. Johnson NP, Toth GG, Lai D, Zhu H, Acar G, Agostoni P, Appelman Y, Arslan F, Barbato E, Chen SL, Di Serafino L, Dominguez‐Franco AJ, Dupouy P, Esen AM, Esen OB, Hamilos M, Iwasaki K, Jensen LO, Jimenez‐Navarro MF, Katritsis DG, Kocaman SA, Koo BK, Lopez‐Palop R, Lorin JD, Miller LH, Muller O, Nam CW, Oud N, Puymirat E, Rieber J, Rioufol G, Rodes‐Cabau J, Sedlis SP, Takeishi Y, Tonino PA, Van Belle E, Verna E, Werner GS, Fearon WF, Pijls NH, De Bruyne B, Gould KL. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol. 2014;64:1641–1654.
    1. Spitaleri G, Tebaldi M, Biscaglia S, Westra J, Brugaletta S, Erriquez A, Passarini G, Brieda A, Leone AM, Picchi A, Ielasi A, Girolamo DD, Trani C, Ferrari R, Reiber JHC, Valgimigli M, Sabate M, Campo G. Quantitative flow ratio identifies nonculprit coronary lesions requiring revascularization in patients with ST‐segment‐elevation myocardial infarction and multivessel disease. Circ Cardiovasc Interv. 2018;11:e006023.

Source: PubMed

3
Tilaa