The Atopic March: Progression from Atopic Dermatitis to Allergic Rhinitis and Asthma

Selene K Bantz, Zhou Zhu, Tao Zheng, Selene K Bantz, Zhou Zhu, Tao Zheng

Abstract

The development of atopic dermatitis (AD) in infancy and subsequent allergic rhinitis and asthma in later childhood is known as the atopic march. This progressive atopy is dependent on various underlying factors such as the presence of filaggrin mutations as well as the time of onset and severity of AD. Clinical manifestations vary among individuals. Previously it was thought that atopic disorders may be unrelated with sequential development. Recent studies support the idea of a causal link between AD and later onset atopic disorders. These studies suggest that a dysfunctional skin barrier serves as a site for allergic sensitization to antigens and colonization of bacterial super antigens. This induces systemic Th2 immunity that predisposes patients to allergic nasal responses and promotes airway hyper reactivity. While AD often starts early in life and is a chronic condition, new research signifies that there may be an optimal window of time in which targeting the skin barrier with therapeutic interventions may prevent subsequent atopic disorders. In this review we highlight recent studies describing factors important in the development of atopic disorders and new insights in our understanding of the pathogenesis of the atopic march.

Keywords: Allergic rhinitis; Asthma; Atopic dermatitis; Eczema; The atopic march.

References

    1. Spergel JM, Paller AS. Atopic dermatitis and the atopic march. J Allergy Clin Immunol. 2003;112:S118–S127.
    1. Spergel JM. Epidemiology of atopic dermatitis and atopic march in children. Immunol Allergy Clin North Am. 2010;30:269–280.
    1. Johansson SG, Bieber T, Dahl R, Friedmann PS, Lanier BQ, et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004;113:832–836.
    1. Spergel JM. Atopic march: link to upper airways. Curr Opin Allergy Clin Immunol. 2005;5:17–21.
    1. Guilbert TW, Morgan WJ, Zeiger RS, Bacharier LB, Boehmer SJ, et al. Atopic characteristics of children with recurrent wheezing at high risk for the development of childhood asthma. J Allergy Clin Immunol. 2004;114:1282–1287.
    1. Gustafsson D, Sjöberg O, Foucard T. Development of allergies and asthma in infants and young children with atopic dermatitis--a prospective follow-up to 7 years of age. Allergy. 2000;55:240–245.
    1. Kapoor R, Menon C, Hoffstad O, Bilker W, Leclerc P, et al. The prevalence of atopic triad in children with physician-confirmed atopic dermatitis. J Am Acad Dermatol. 2008;58:68–73.
    1. Kulig M, Bergmann R, Klettke U, Wahn V, Tacke U, et al. Natural course of sensitization to food and inhalant allergens during the first 6 years of life. J Allergy Clin Immunol. 1999;103:1173–1179.
    1. Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, et al. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995;332:133–138.
    1. Novembre E, Cianferoni A, Lombardi E, Bernardini R, Pucci N, et al. Natural history of "intrinsic" atopic dermatitis. Allergy. 2001;56:452–453.
    1. Ohshima Y, Yamada A, Hiraoka M, Katamura K, Ito S, et al. Early sensitization to house dust mite is a major risk factor for subsequent development of bronchial asthma in Japanese infants with atopic dermatitis: results of a 4-year followup study. Ann Allergy Asthma Immunol. 2002;89:265–270.
    1. Ricci G, Patrizi A, Baldi E, Menna G, Tabanelli M, et al. Long-term follow-up of atopic dermatitis: retrospective analysis of related risk factors and association with concomitant allergic diseases. J Am Acad Dermatol. 2006;55:765–771.
    1. van der Hulst AE, Klip H, Brand PL. Risk of developing asthma in young children with atopic eczema: a systematic review. J Allergy Clin Immunol. 2007;120:565–569.
    1. Wüthrich B, Schmid-Grendelmeier P. The atopic eczema/dermatitis syndrome. Epidemiology, natural course, and immunology of the IgE-associated ("extrinsic") and the nonallergic ("intrinsic") AEDS. J Investig Allergol Clin Immunol. 2003;13:1–5.
    1. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet. 1998;351:1225–1232. [No authors listed]
    1. Asher MI, Montefort S, Björkstén B, Lai CK, Strachan DP, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006;368:733–743.
    1. Kamer B, Pasowska R2, DóÅ,ka E2, Blomberg A3, Rotsztejn H4. Prevalence of atopic dermatitis in infants during the first six months of life: authors' observations. Postepy Dermatol Alergol. 2013;30:277–281.
    1. von Kobyletzki LB, Bornehag CG, Hasselgren M, Larsson M, Lindström CB, et al. Eczema in early childhood is strongly associated with the development of asthma and rhinitis in a prospective cohort. BMC Dermatol. 2012;12:11.
    1. Kay J, Gawkrodger DJ, Mortimer MJ, Jaron AG. The prevalence of childhood atopic eczema in a general population. J Am Acad Dermatol. 1994;30:35–39.
    1. Spergel JM. From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol. 2010;105:99–106.
    1. Hon KL, Leung AK, Barankin B. Barrier repair therapy in atopic dermatitis: an overview. Am J Clin Dermatol. 2013;14:389–399.
    1. Wüthrich B, Schmid-Grendelmeier P. Natural course of AEDS. Allergy. 2002;57:267–268.
    1. Saunes M, Øien T, Dotterud CK, Romundstad PR, Storrø O, et al. Early eczema and the risk of childhood asthma: a prospective, population-based study. BMC Pediatr. 2012;12:168.
    1. Ballardini N, Bergström A2, Böhme M3, van Hage M4, Hallner E2, et al. Infantile eczema: Prognosis and risk of asthma and rhinitis in preadolescence. J Allergy Clin Immunol. 2014;133:594–596.
    1. Burgess JA, Dharmage SC, Byrnes GB, Matheson MC, Gurrin LC, et al. Childhood eczema and asthma incidence and persistence: a cohort study from childhood to middle age. J Allergy Clin Immunol. 2008;122:280–285.
    1. Silverberg JI, Hanifin JM. Adult eczema prevalence and associations with asthma and other health and demographic factors: a US population-based study. J Allergy Clin Immunol. 2013;132:1132–1138.
    1. Bugiani M, Carosso A, Migliore E, Piccioni P, Corsico A, et al. Allergic rhinitis and asthma comorbidity in a survey of young adults in Italy. Allergy. 2005;60:165–170.
    1. Burgess JA, Walters EH, Byrnes GB, Matheson MC, Jenkins MA, et al. Childhood allergic rhinitis predicts asthma incidence and persistence to middle age: a longitudinal study. J Allergy Clin Immunol. 2007;120:863–869.
    1. Guerra S, Sherrill DL, Martinez FD, Barbee RA. Rhinitis as an independent risk factor for adult-onset asthma. J Allergy Clin Immunol. 2002;109:419–425.
    1. Leynaert B, Neukirch C, Kony S, Guénégou A, Bousquet J, et al. Association between asthma and rhinitis according to atopic sensitization in a population-based study. J Allergy Clin Immunol. 2004;113:86–93.
    1. Shaaban R, Zureik M, Soussan D, Neukirch C, Heinrich J, et al. Rhinitis and onset of asthma: a longitudinal population-based study. Lancet. 2008;372:1049–1057.
    1. Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen) Allergy. 2008;63(Suppl 86):8–160.
    1. Ciprandi G, Cirillo I, Vizzaccaro A, Milanese M, Tosca MA. Airway function and nasal inflammation in seasonal allergic rhinitis and asthma. Clin Exp Allergy. 2004;34:891–896.
    1. Rondón C, Campo P, Zambonino MA, Blanca-Lopez N, Torres MJ, et al. Follow-up study in local allergic rhinitis shows a consistent entity not evolving to systemic allergic rhinitis. J Allergy Clin Immunol. 2014;133:1026–1031.
    1. Hopper JL, Bui QM, Erbas B, Matheson MC, Gurrin LC, et al. Does eczema in infancy cause hay fever, asthma, or both in childhood? Insights from a novel regression model of sibling data. J Allergy Clin Immunol. 2012;130:1117–1122.
    1. Liew WK, Williamson E, Tang ML. Anaphylaxis fatalities and admissions in Australia. J Allergy Clin Immunol. 2009;123:434–442.
    1. Poulos LM, Waters AM, Correll PK, Loblay RH, Marks GB. Trends in hospitalizations for anaphylaxis, angioedema, and urticaria in Australia, 1993–1994 to 2004–2005. J Allergy Clin Immunol. 2007;120:878–884.
    1. Eigenmann PA, Sicherer SH, Borkowski TA, Cohen BA, Sampson HA. Prevalence of IgE-mediated food allergy among children with atopic dermatitis. Pediatrics. 1998;101:E8.
    1. Filipiak-Pittroff B, Schnopp C, Berdel D, Naumann A, Sedlmeier S, et al. Predictive value of food sensitization and filaggrin mutations in children with eczema. J Allergy Clin Immunol. 2011;128:1235–1241.
    1. Malmberg LP, Saarinen KM, Pelkonen AS, Savilahti E, Mäkelä MJ. Cow's milk allergy as a predictor of bronchial hyperresponsiveness and airway inflammation at school age. Clin Exp Allergy. 2010;40:1491–1497.
    1. Saarinen KM, Pelkonen AS, Mäkelä MJ, Savilahti E. Clinical course and prognosis of cow's milk allergy are dependent on milk-specific IgE status. J Allergy Clin Immunol. 2005;116:869–875.
    1. He R, Kim HY, Yoon J, Oyoshi MK, MacGinnitie A, et al. Exaggerated IL-17 response to epicutaneous sensitization mediates airway inflammation in the absence of IL-4 and IL-13. J Allergy Clin Immunol. 2009;124:761–770.
    1. Spergel JM, Mizoguchi E, Brewer JP, Martin TR, Bhan AK, et al. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J Clin Invest. 1998;101:1614–1622.
    1. Akei HS, Brandt EB, Mishra A, Strait RT, Finkelman FD, et al. Epicutaneous aeroallergen exposure induces systemic TH2 immunity that predisposes to allergic nasal responses. J Allergy Clin Immunol. 2006;118:62–69.
    1. Strid J, Hourihane J, Kimber I, Callard R, Strobel S. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. Eur J Immunol. 2004;34:2100–2109.
    1. Liu YJ. Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med. 2006;203:269–273.
    1. Lee EB, Kim KW, Hong JY, Jee HM, Sohn MH, et al. Increased serum thymic stromal lymphopoietin in children with atopic dermatitis. Pediatr Allergy Immunol. 2010;21:e457–e460.
    1. Zheng T, Oh MH, Oh SY, Schroeder JT, Glick AB, et al. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Invest Dermatol. 2009;129:742–751.
    1. Li M, Hener P, Zhang Z, Kato S, Metzger D, et al. Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc Natl Acad Sci U S A. 2006;103:11736–11741.
    1. Demehri S, Morimoto M, Holtzman MJ, Kopan R. Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma. PLoS Biol. 2009;7:e1000067.
    1. Hansel TT, Johnston SL, Openshaw PJ. Microbes and mucosal immune responses in asthma. Lancet. 2013;381:861–873.
    1. Aly R, Maibach HI, Shinefield HR. Microbial flora of atopic dermatitis. Arch Dermatol. 1977;113:780–782.
    1. Breuer K, Kapp A, Werfel T. Bacterial infections and atopic dermatitis. Allergy. 2001;56:1034–1041.
    1. Breuer K, Wittmann M, Bösche B, Kapp A, Werfel T. Severe atopic dermatitis is associated with sensitization to staphylococcal enterotoxin B (SEB) Allergy. 2000;55:551–555.
    1. Bunikowski R, Mielke M, Skarabis H, Herz U, Bergmann RL, et al. Prevalence and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. J Allergy Clin Immunol. 1999;103:119–124.
    1. Leung DY, Harbeck R, Bina P, Reiser RF, Yang E, et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest. 1993;92:1374–1380.
    1. Lin YT, Wang CT, Chao PS, Lee JH, Wang LC, et al. Skin-homing CD4+ Foxp3+ T cells exert Th2-like function after staphylococcal superantigen stimulation in atopic dermatitis patients. Clin Exp Allergy. 2011;41:516–525.
    1. Salt BH, Boguniewicz M, Leung DY. Severe refractory atopic dermatitis in adults is highly atopic. J Allergy Clin Immunol. 2007;119:508–509.
    1. Yu J, Oh MH, Park JU, Myers AC, Dong C, et al. Epicutaneous exposure to staphylococcal superantigen enterotoxin B enhances allergic lung inflammation via an IL-17A dependent mechanism. PLoS One. 2012;7:e39032.
    1. Skov L, Olsen JV, Giorno R, Schlievert PM, Baadsgaard O, et al. Application of Staphylococcal enterotoxin B on normal and atopic skin induces up-regulation of T cells by a superantigen-mediated mechanism. J Allergy Clin Immunol. 2000;105:820–826.
    1. Haapakoski R, Karisola P, Fyhrquist N, Savinko T, Lehtimäki S, et al. Toll-like receptor activation during cutaneous allergen sensitization blocks development of asthma through IFN-gamma-dependent mechanisms. J Invest Dermatol. 2013;133:964–972.
    1. Cork MJ, Robinson DA, Vasilopoulos Y, Ferguson A, Moustafa M, et al. New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J Allergy Clin Immunol. 2006;118:3–21.
    1. Arikawa J, Ishibashi M, Kawashima M, Takagi Y, Ichikawa Y, et al. Decreased levels of sphingosine, a natural antimicrobial agent, may be associated with vulnerability of the stratum corneum from patients with atopic dermatitis to colonization by Staphylococcus aureus. J Invest Dermatol. 2002;119:433–439.
    1. Illi S, von Mutius E, Lau S, Nickel R, Grüber C, et al. The natural course of atopic dermatitis from birth to age 7 years and the association with asthma. J Allergy Clin Immunol. 2004;113:925–931.
    1. Kissling S, Wüthrich B. [Follow-up of atopic dermatitis after early childhood] Hautarzt. 1993;44:569–573.
    1. McGrath JA, Uitto J. The filaggrin story: novel insights into skinbarrier function and disease. Trends Mol Med. 2008;14:20–27.
    1. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38:441–446.
    1. Werner Y, Lindberg M. Transepidermal water loss in dry and clinically normal skin in patients with atopic dermatitis. Acta Derm Venereol. 1985;65:102–105.
    1. Grice K, Sattar H, Baker H, Sharratt M. The relationship of transepidermal water loss to skin temperature in psoriasis and eczema. J Invest Dermatol. 1975;64:313–315.
    1. Seidenari S, Giusti G. Objective assessment of the skin of children affected by atopic dermatitis: a study of pH, capacitance and TEWL in eczematous and clinically uninvolved skin. Acta Derm Venereol. 1995;75:429–433.
    1. Gupta J, Grube E, Ericksen MB, Stevenson MD, Lucky AW, et al. Intrinsically defective skin barrier function in children with atopic dermatitis correlates with disease severity. J Allergy Clin Immunol. 2008;121:725–730.
    1. Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA. New insights into atopic dermatitis. J Clin Invest. 2004;113:651–657.
    1. Zhu Z, Oh MH, Yu J, Liu YJ, Zheng T. The Role of TSLP in IL-13-induced atopic march. Sci Rep. 2011;1:23.
    1. Gittler JK, Shemer A, Suárez-Fariñas M, Fuentes-Duculan J, Gulewicz KJ, et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130:1344–1354.
    1. Nograles KE, Zaba LC, Shemer A, Fuentes-Duculan J, Cardinale I, et al. IL-22-producing "T22" T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol. 2009;123:1244–1252.
    1. Souwer Y, Szegedi K, Kapsenberg ML, de Jong EC. IL-17 and IL-22 in atopic allergic disease. Curr Opin Immunol. 2010;22:821–826.
    1. Teraki Y, Sakurai A, Izaki S. IL-13/IL-22-coproducing T cells, a novel subset, are increased in atopic dermatitis. J Allergy Clin Immunol. 2013;132:971–974.
    1. Leung DY. New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergol Int. 2013;62:151–161.
    1. McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol. 2013;131:280–291.
    1. Michie CA, Davis T. Atopic dermatitis and staphylococcal superantigens. Lancet. 1996;347:324.
    1. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347:1151–1160.
    1. Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol. 1974;90:525–530.
    1. Allakhverdi Z, Comeau MR, Jessup HK, Yoon BR, Brewer A, et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med. 2007;204:253–258.
    1. Bunikowski R, Mielke ME, Skarabis H, Worm M, Anagnostopoulos I, et al. Evidence for a disease-promoting effect of Staphylococcus aureus-derived exotoxins in atopic dermatitis. J Allergy Clin Immunol. 2000;105:814–819.
    1. Nomura I, Tanaka K, Tomita H, Katsunuma T, Ohya Y, et al. Evaluation of the staphylococcal exotoxins and their specific IgE in childhood atopic dermatitis. J Allergy Clin Immunol. 1999;104:441–446.
    1. Lodge CJ, Lowe AJ, Gurrin LC, Hill DJ, Hosking CS, et al. House dust mite sensitization in toddlers predicts current wheeze at age 12 years. J Allergy Clin Immunol. 2011;128:782–788.
    1. Rochat MK, Illi S, Ege MJ, Lau S, Keil T, et al. Allergic rhinitis as a predictor for wheezing onset in school-aged children. J Allergy Clin Immunol. 2010;126:1170–1175.
    1. Martin PE, Matheson MC, Gurrin L, Burgess JA, Osborne N, et al. Childhood eczema and rhinitis predict atopic but not nonatopic adult asthma: a prospective cohort study over 4 decades. J Allergy Clin Immunol. 2011;127:1473–1479.
    1. Mischke D, Korge BP, Marenholz I, Volz A, Ziegler A. Genes encoding structural proteins of epidermal cornification and S100 calcium-binding proteins form a gene complex ("epidermal differentiation complex") on human chromosome 1q21. J Invest Dermatol. 1996;106:989–992.
    1. O'Regan GM, Sandilands A, McLean WH, Irvine AD. Filaggrin in atopic dermatitis. J Allergy Clin Immunol. 2009;124:R2–R6.
    1. Marenholz I, Nickel R, Rüschendorf F, Schulz F, Esparza-Gordillo J, et al. Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. J Allergy Clin Immunol. 2006;118:866–871.
    1. Stemmler S, Parwez Q, Petrasch-Parwez E, Epplen JT, Hoffjan S. Two common loss-of-function mutations within the filaggrin gene predispose for early onset of atopic dermatitis. J Invest Dermatol. 2007;127:722–724.
    1. Tan HT, Ellis JA, Koplin JJ, Matheson MC, Gurrin LC, et al. Filaggrin loss-of-function mutations do not predict food allergy over and above the risk of food sensitization among infants. J Allergy Clin Immunol. 2012;130:1211–1213.
    1. Margolis DJ, Apter AJ, Gupta J, Hoffstad O, Papadopoulos M, et al. The persistence of atopic dermatitis and filaggrin (FLG) mutations in a US longitudinal cohort. J Allergy Clin Immunol. 2012;130:912–917.
    1. Ying S, Meng Q, Corrigan CJ, Lee TH. Lack of filaggrin expression in the human bronchial mucosa. J Allergy Clin Immunol. 2006;118:1386–1388.
    1. Morar N, Cookson WO, Harper JI, Moffatt MF. Filaggrin mutations in children with severe atopic dermatitis. J Invest Dermatol. 2007;127:1667–1672.
    1. Brown SJ, Asai Y, Cordell HJ, Campbell LE, Zhao Y, et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol. 2011;127:661–667.
    1. Asai Y, Greenwood C, Hull PR, Alizadehfar R, Ben-Shoshan M, et al. Filaggrin gene mutation associations with peanut allergy persist despite variations in peanut allergy diagnostic criteria or asthma status. J Allergy Clin Immunol. 2013;132:239–242.
    1. Brough HA, Santos AF, Makinson K, Penagos M, Stephens AC, et al. Peanut protein in household dust is related to household peanut consumption and is biologically active. J Allergy Clin Immunol. 2013;132:630–638.
    1. Fallon PG, Sasaki T, Sandilands A, Campbell LE, Saunders SP, et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat Genet. 2009;41:602–608.
    1. Oyoshi MK, Murphy GF, Geha RS. Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J Allergy Clin Immunol. 2009;124:485–493. 493.
    1. Barker JN, Palmer CN, Zhao Y, Liao H, Hull PR, et al. Null mutations in the filaggrin gene (FLG) determine major susceptibility to early-onset atopic dermatitis that persists into adulthood. J Invest Dermatol. 2007;127:564–567.
    1. Weidinger S, Illig T, Baurecht H, Irvine AD, Rodriguez E, et al. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol. 2006;118:214–219.
    1. Weidinger S, Rodríguez E, Stahl C, Wagenpfeil S, Klopp N, et al. Filaggrin mutations strongly predispose to early-onset and extrinsic atopic dermatitis. J Invest Dermatol. 2007;127:724–726.
    1. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007;120:150–155.
    1. Choi H, Kim S, Kim HJ, Kim KM, Lee CH, et al. Sphingosylphosphorylcholine down-regulates filaggrin gene transcription through NOX5-based NADPH oxidase and cyclooxygenase-2 in human keratinocytes. Biochem Pharmacol. 2010;80:95–103.
    1. Andoh T, Saito A, Kuraishi Y. Leukotriene B(4) mediates sphingosylphosphorylcholine-induced itch-associated responses in mouse skin. J Invest Dermatol. 2009;129:2854–2860.
    1. De Benedetto A, Agnihothri R, McGirt LY, Bankova LG, Beck LA. Atopic dermatitis: a disease caused by innate immune defects? J Invest Dermatol. 2009;129:14–30.
    1. Sugiura H, Ebise H, Tazawa T, Tanaka K, Sugiura Y, et al. Large-scale DNA microarray analysis of atopic skin lesions shows overexpression of an epidermal differentiation gene cluster in the alternative pathway and lack of protective gene expression in the cornified envelope. Br J Dermatol. 2005;152:146–149.
    1. Kim BE, Leung DY, Boguniewicz M, Howell MD. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126:332–337.
    1. Henderson J, Northstone K, Lee SP, Liao H, Zhao Y, et al. The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J Allergy Clin Immunol. 2008;121:872–877.
    1. Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet. 2006;38:337–342.

Source: PubMed

3
Tilaa