Supervised versus unsupervised primaquine radical cure for the treatment of falciparum and vivax malaria in Papua, Indonesia: a cluster-randomised, controlled, open-label superiority trial

Jeanne Rini Poespoprodjo, Faustina Helena Burdam, Freis Candrawati, Benedikt Ley, Niamh Meagher, Enny Kenangalem, Ratni Indrawanti, Leily Trianty, Kamala Thriemer, David J Price, Julie A Simpson, Ric N Price, Jeanne Rini Poespoprodjo, Faustina Helena Burdam, Freis Candrawati, Benedikt Ley, Niamh Meagher, Enny Kenangalem, Ratni Indrawanti, Leily Trianty, Kamala Thriemer, David J Price, Julie A Simpson, Ric N Price

Abstract

Background: There is a high risk of Plasmodium vivax recurrence in patients treated for Plasmodium falciparum malaria in co-endemic areas. Primaquine radical cure has the potential to reduce P vivax recurrences in patients presenting with P falciparum as well as P vivax malaria but is undermined by poor adherence to the currently recommended 14-day regimen. We aimed to assess the efficacy and safety of supervised versus unsupervised primaquine radical cure in patients presenting with uncomplicated malaria.

Methods: We did a cluster-randomised, controlled, open-label superiority trial in Papua, Indonesia. 21 clusters of village health posts, matched by annual parasite index, were randomly assigned (1:1) to treat patients (age >12 months and body weight >5 kg) presenting with confirmed uncomplicated P falciparum or P vivax malaria with oral dihydroartemisinin-piperaquine plus either a supervised or unsupervised 14-day course of oral primaquine (0·5 mg/kg per day). Patients in the supervised group were supervised taking their primaquine dose on alternate days. Patients were followed-up for 6 months and those who presented again with malaria were retreated with the same drug regimen. Masking was not possible due to the nature of the study. The primary outcome was the incidence risk of P vivax malaria over 6 months, assessed in the modified intention-to-treat population (all patients who were assigned to a treatment group, excluding patients who were lost to follow-up after their first visit). This trial is now complete, and is registered with ClinicalTrials.gov, NCT02787070.

Findings: Between Sept 14, 2016, and July 31, 2018, 436 patients were screened for eligibility and 419 were enrolled; 223 (53%) patients in 11 clusters were assigned to supervised primaquine treatment and 196 (47%) in ten clusters to unsupervised primaquine treatment. 161 (72%) of 223 patients in the supervised group and 151 (77%) of 196 in the unsupervised group completed 6 months of follow-up. At 6 months, the incidence risk of P vivax recurrence in the supervised group was 29·7% (95% CI 16·4-49·9) versus 55·8% (32·3-81·8) in the unsupervised group (hazard ratio 0·23 [95% CI 0·07-0·76]; p=0·016). The incidence rate for P vivax recurrence was 539 (95% CI 390-747) infections per 1000 person-years in the supervised group versus 859 (673-1096) in the unsupervised group (incidence rate ratio 0·63 [95% CI 0·42-0·94]; p=0·025). The corresponding rates in the 224 patients who presented with P falciparum malaria were 346 (95% CI 213-563) and 660 (446-977; incidence rate ratio 0·52 [95% CI 0·28-0·98]; p=0·043). Seven serious adverse events were reported (three in the supervised group, four in the unsupervised group), none of which were deemed treatment-related, and there were no deaths.

Interpretation: In this area of moderate malaria transmission, supervision of primaquine radical cure treatment reduced the risk of P vivax recurrence. This finding was apparent for patients presenting with either P falciparum or P vivax malaria. Further studies are warranted to investigate the safety and efficacy of radical cure for patients presenting with uncomplicated falciparum malaria in other co-endemic areas.

Funding: The Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Foreign Affairs and Trade of the Australian Government.

Translation: For the Indonesian translation of the abstract see Supplementary Materials section.

Conflict of interest statement

Declaration of interests We declare no competing interests.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

Figures

Figure 1
Figure 1
Trial profile G6PD=glucose-6-phosphate dehydrogenase.
Figure 2
Figure 2
Cumulative incidence of the first recurrence of Plasmodium vivax parasitaemia The shaded areas represent 95% CIs.
Figure 3
Figure 3
Relative and absolute change in haemoglobin from before (day 0) to after 14 days of primaquine treatment (day 16) (A) Relative change in haemoglobin. (B) Absolute change in haemoglobin. 171 participants in the unsupervised group (blue) and 195 in the supervised group (red) had measurements at both timepoints. Circles denote participants enrolled with Plasmodium vivax, triangles denote those enrolled with Plasmodium falciparum, and squares denote those enrolled with mixed P vivax and P falciparum infection. The dashed orange lines represent a fractional fall of 25%. The shaded area on both graphs represents an absolute fall of greater than 5 g/dL.

References

    1. Battle KE, Lucas TCD, Nguyen M, et al. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet. 2019;394:332–343.
    1. Price RN, Commons RJ, Battle KE, Thriemer K, Mendis K. Plasmodium vivax in the era of the shrinking P. falciparum map. Trends Parasitol. 2020;36:560–570.
    1. White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J. 2011;10:297.
    1. Poespoprodjo JR, Fobia W, Kenangalem E, et al. Vivax malaria: a major cause of morbidity in early infancy. Clin Infect Dis. 2009;48:1704–1712.
    1. McGready R, Wongsaen K, Chu CS, et al. Uncomplicated Plasmodium vivax malaria in pregnancy associated with mortality from acute respiratory distress syndrome. Malar J. 2014;13:191.
    1. Dini S, Douglas NM, Poespoprodjo JR, et al. The risk of morbidity and mortality following recurrent malaria in Papua, Indonesia: a retrospective cohort study. BMC Med. 2020;18:28.
    1. Douglas NM, Poespoprodjo JR, Patriani D, et al. Unsupervised primaquine for the treatment of Plasmodium vivax malaria relapses in southern Papua: a hospital-based cohort study. PLoS Med. 2017;14
    1. Nelwan EJ, Ekawati LL, Tjahjono B, et al. Randomized trial of primaquine hypnozoitocidal efficacy when administered with artemisinin-combined blood schizontocides for radical cure of Plasmodium vivax in Indonesia. BMC Med. 2015;13:294.
    1. Bruxvoort K, Goodman C, Kachur SP, Schellenberg D. How patients take malaria treatment: a systematic review of the literature on adherence to antimalarial drugs. PLoS One. 2014;9
    1. WHO . 3rd edn. World Health Organization; Geneva: 2015. Guidelines for the treatment of malaria.
    1. Commons RJ, Simpson JA, Thriemer K, et al. Risk of Plasmodium vivax parasitaemia after Plasmodium falciparum infection: a systematic review and meta-analysis. Lancet Infect Dis. 2019;19:91–101.
    1. Hossain MS, Commons RJ, Douglas NM, et al. The risk of Plasmodium vivax parasitaemia after P. falciparum malaria: an individual patient data meta-analysis from the WorldWide Antimalarial Resistance Network. PLoS Med. 2020;17
    1. Douglas NM, Nosten F, Ashley EA, et al. Plasmodium vivax recurrence following falciparum and mixed species malaria: risk factors and effect of antimalarial kinetics. Clin Infect Dis. 2011;52:612–620.
    1. Kenangalem E, Poespoprodjo JR, Douglas NM, et al. Malaria morbidity and mortality following introduction of a universal policy of artemisinin-based treatment for malaria in Papua, Indonesia: a longitudinal surveillance study. PLoS Med. 2019;16
    1. Karyana M, Burdarm L, Yeung S, et al. Malaria morbidity in Papua Indonesia, an area with multidrug resistant Plasmodium vivax and Plasmodium falciparum. Malar J. 2008;7:148.
    1. Severe malaria. Trop Med Int Health. 2014;19(suppl 1):7–131. No authors listed.
    1. Maneeboonyang W, Lawpoolsri S, Puangsa-Art S, et al. Directly observed therapy with primaquine to reduce the recurrence rate of Plasmodium vivax infection along the Thai–Myanmar border. Southeast Asian J Trop Med Public Health. 2011;42:9–18.
    1. Peerawaranun P, Landier J, Nosten FH, et al. Intracluster correlation coefficients in the Greater Mekong Subregion for sample size calculations of cluster randomized malaria trials. Malar J. 2019;18:428.
    1. Ratcliff A, Siswantoro H, Kenangalem E, et al. Two fixed-dose artemisinin combinations for drug-resistant falciparum and vivax malaria in Papua, Indonesia: an open-label randomised comparison. Lancet. 2007;369:757–765.
    1. Poespoprodjo JR, Kenangalem E, Wafom J, et al. Therapeutic response to dihydroartemisinin–piperaquine for P. falciparum and P. vivax nine years after its introduction in southern Papua, Indonesia. Am J Trop Med Hyg. 2018;98:677–682.
    1. Commons RJ, Simpson JA, Watson J, White NJ, Price RN. Estimating the proportion of Plasmodium vivax recurrences caused by relapse: a systematic review and meta-analysis. Am J Trop Med Hyg. 2020;103:1094–1099.
    1. Douglas NM, John GK, von Seidlein L, Anstey NM, Price RN. Chemotherapeutic strategies for reducing transmission of Plasmodium vivax malaria. Adv Parasitol. 2012;80:271–300.
    1. Lacerda MVG, Llanos-Cuentas A, Krudsood S, et al. Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380:215–228.
    1. Commons RJ, Simpson JA, Thriemer K, et al. The haematological consequences of Plasmodium vivax malaria after chloroquine treatment with and without primaquine: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis. BMC Med. 2019;17:151.
    1. Price RN, Simpson JA, Nosten F, et al. Factors contributing to anemia after uncomplicated falciparum malaria. Am J Trop Med Hyg. 2001;65:614–622.
    1. Taylor WRJ, Thriemer K, von Seidlein L, et al. Short-course primaquine for the radical cure of Plasmodium vivax malaria: a multicentre, randomised, placebo-controlled non-inferiority trial. Lancet. 2019;394:929–938.
    1. Llanos-Cuentas A, Lacerda MVG, Hien TT, et al. Tafenoquine versus primaquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380:229–241.
    1. White NJ. Anti-malarial drug effects on parasite dynamics in vivax malaria. Malar J. 2021;20:161.
    1. Leurent B, Reyburn H, Muro F, Mbakilwa H, Schellenberg D. Monitoring patient care through health facility exit interviews: an assessment of the Hawthorne effect in a trial of adherence to malaria treatment guidelines in Tanzania. BMC Infect Dis. 2016;16:59.
    1. Rosenberg M, Pettifor A, Twine R, et al. Evidence for sample selection effect and Hawthorne effect in behavioural HIV prevention trial among young women in a rural South African community. BMJ Open. 2018;8

Source: PubMed

3
Tilaa