Influence of ApoE Genotype and Clock T3111C Interaction with Cardiovascular Risk Factors on the Progression to Alzheimer's Disease in Subjective Cognitive Decline and Mild Cognitive Impairment Patients

Valentina Bessi, Juri Balestrini, Silvia Bagnoli, Salvatore Mazzeo, Giulia Giacomucci, Sonia Padiglioni, Irene Piaceri, Marco Carraro, Camilla Ferrari, Laura Bracco, Sandro Sorbi, Benedetta Nacmias, Valentina Bessi, Juri Balestrini, Silvia Bagnoli, Salvatore Mazzeo, Giulia Giacomucci, Sonia Padiglioni, Irene Piaceri, Marco Carraro, Camilla Ferrari, Laura Bracco, Sandro Sorbi, Benedetta Nacmias

Abstract

Background: Some genes could interact with cardiovascular risk factors in the development of Alzheimer's disease. We aimed to evaluate the interaction between ApoE ε4 status, Clock T3111C and Per2 C111G polymorphisms with cardiovascular profile in Subjective Cognitive Decline (SCD) and Mild Cognitive Impairment (MCI).

Methods: We included 68 patients who underwent clinical evaluation; neuropsychological assessment; ApoE, Clock and Per2 genotyping at baseline; and neuropsychological follow-up every 12-24 months for a mean of 13 years. We considered subjects who developed AD and non-converters.

Results: Clock T3111C was detected in 47% of cases, Per2 C111G in 19% of cases. ApoE ε4 carriers presented higher risk of heart disease; Clock C-carriers were more frequently smokers than non C-carriers. During the follow-up, 17 patients progressed to AD. Age at baseline, ApoE ε 4 and dyslipidemia increased the risk of conversion to AD. ApoE ε4 carriers with history of dyslipidemia showed higher risk to convert to AD compared to ApoE ε4- groups and ApoE ε4+ without dyslipidemia patients. Clock C-carriers with history of blood hypertension had a higher risk of conversion to AD.

Conclusions: ApoE and Clock T3111C seem to interact with cardiovascular risk factors in SCD and MCI patients influencing the progression to AD.

Keywords: ApoE; Clock; alzheimer’s disease; cardiovascular risk factors; clock genes; mild cognitive impairment; subjective cognitive decline.

Conflict of interest statement

No authors report any conflicts of interest for this study.

Figures

Figure 1
Figure 1
(a) Kaplan–Meier survival analysis for comparisons of proportion of progression to AD between dyslipidemic (n = 4) and non-dyslipidemic (n = 17) patients in ApoE ε4+ carrier group. Proportion of progression was higher in dyslipidemic group (100.00%) compared to non-dyslipidemic (29.40%). The pairwise log rank comparisons showed significant difference in survival distributions for the dyslipidemic vs. non-dyslipidemic (χ2 = 4.42, p = 0.036). (b) Kaplan–Meier survival analysis for comparisons of proportion of progression to AD between dyslipidemic (n = 15) and non-dyslipidemic (n = 29) patients in ApoE ε4− carrier group. The pairwise log rank comparisons showed no significant difference in survival distributions for the dyslipidemic vs. non-dyslipidemic (χ2 = 1.92, p = 0.166). * For censored cases (non-converters), conversion time indicates follow-up time.
Figure 2
Figure 2
Kaplan–Meier survival analysis for comparisons of patients ranked according to history of dyslipidemia and ApoE genotype (non-dylipidemic/ε4−, n = 29; dyslipidemic/ε4−, n = 17; non-dylipidemic/high/ε4+, n = 15; dylipidemic/ε4+, n = 4). Proportion of progression was higher in dylipidemic/ε4+ (100.00%) compared to non-dylipidemic/ε4− (10.30%, χ2 = 25.47, p < 0.001), non-dylipidemic/ε4+ (29.40%, χ2 = 4.42, p = 0.036), and dylipidemic/ε4− (26.7%, χ2 = 7.64, p = 0.006). Proportion of progression in non-dylipidemic/ε4+ group (26.7%) was higher than non-dylipidemic/ε4− (10.3%, χ2 = 3.73, p = 0.05). * For censored cases (non converters) conversion time indicates follow-up time.
Figure 3
Figure 3
(a) Kaplan–Meier survival analysis for comparisons of proportion of progression to AD between hypertensive (n = 6) and non-hypertensive (n = 26) patients in Clock C carriers group. Proportion of progression was higher in hypertensive group (50.00%) compared to non-hypertensive (11.50%). The pairwise log rank comparisons showed significant difference in survival distributions for the hypertensive vs. non-hypertensive (χ2 = 5.77, p = 0.017). (b) Kaplan–Meier survival analysis for comparisons of proportion of progression to AD between hypertensive (n = 9) and non-hypertensive (n = 26) patients in Clock non C carriers group. The pairwise log rank comparisons showed no significant difference in survival distributions for the hypertensive vs. non-hypertensive (χ2 = 0.323, p = 0.570). * For censored cases (non converters) conversion time indicates follow-up time.

References

    1. Sperling R.A., Aisen P.S., Beckett L.A., Bennett D.A., Craft S., Fagan A.M., Iwatsubo T., Jack C.R., Kaye J., Montine T.J., et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:280–292.
    1. Jessen F., Amariglio R.E., van Boxtel M., Breteler M., Ceccaldi M., Chételat G., Dubois B., Dufouil C., Ellis K.A., van der Flier W.M., et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dement. 2014;10:844–852.
    1. Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C., Gamst A., Holtzman D.M., Jagust W.J., Petersen R.C., et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:270–279. doi: 10.1016/j.jalz.2011.03.008.
    1. Bessi V., Mazzeo S., Padiglioni S., Piccini C., Nacmias B., Sorbi S., Bracco L. From Subjective Cognitive Decline to Alzheimer’s Disease: The Predictive Role of Neuropsychological Assessment, Personality Traits, and Cognitive Reserve. A 7-Year Follow-Up Study. J. Alzheimer’s Dis. 2018;63:1523–1535.
    1. Brodaty H., Heffernan M., Kochan N.A., Draper B., Trollor J.N., Reppermund S., Slavin M.J., Sachdev P.S. Mild cognitive impairment in a community sample: The Sydney Memory and Ageing Study. Alzheimer’s Dement. 2013;9:310–317.e1. doi: 10.1016/j.jalz.2011.11.010.
    1. Mitchell A.J., Beaumont H., Ferguson D., Yadegarfar M., Stubbs B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: Meta-analysis. Acta Psychiatr. Scand. 2014;130:439–451. doi: 10.1111/acps.12336.
    1. Raichlen D.A., Bharadwaj P.K., Nguyen L.A., Franchetti M.K., Zigman E.K., Solorio A.R., Alexander G.E. Effects of simultaneous cognitive and aerobic exercise training on dual-task walking performance in healthy older adults: Results from a pilot randomized controlled trial. BMC Geriatr. 2020;20:83. doi: 10.1186/s12877-020-1484-5.
    1. Reiter K., Nielson K.A., Smith T.J., Weiss L.R., Alfini A.J., Smith J.C. Improved Cardiorespiratory Fitness Is Associated with Increased Cortical Thickness in Mild Cognitive Impairment. J. Int. Neuropsychol. Soc. JINS. 2015;21:757–767.
    1. World Health Organization . Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines. WHO; Geneva, Switzerland: 2019. p. 401.
    1. Norton S., Matthews F.E., Barnes D.E., Yaffe K., Brayne C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol. 2014;13:788–794. doi: 10.1016/S1474-4422(14)70136-X.
    1. Cazaly E., Charlesworth J., Dickinson J.L., Holloway A.F. Genetic Determinants of Epigenetic Patterns: Providing Insight into Disease. Mol. Med. 2015;21:400–409. doi: 10.2119/molmed.2015.00001.
    1. Ko C.H., Takahashi J.S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006;15:R271–R277.
    1. Hood S., Amir S. Neurodegeneration and the Circadian Clock. Front. Aging Neurosci. 2017;9:170. doi: 10.3389/fnagi.2017.00170.
    1. Leng Y., Musiek E.S., Hu K., Cappuccio F.P., Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019;18:307–318. doi: 10.1016/S1474-4422(18)30461-7.
    1. Bonney S., Kominsky D., Brodsky K., Eltzschig H., Walker L., Eckle T. Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart. PLoS ONE. 2013;8:e71493. doi: 10.1371/journal.pone.0071493.
    1. Gómez-Abellán P., Hernández-Morante J.J., Luján J.A., Madrid J.A., Garaulet M. Clock genes are implicated in the human metabolic syndrome. Int. J. Obes. 2008;32:121–128. doi: 10.1038/sj.ijo.0803689.
    1. Pagliai G., Sofi F., Dinu M., Sticchi E., Vannetti F., Molino Lova R., Ordovàs J.M., Gori A.M., Marcucci R., Giusti B., et al. CLOCK gene polymorphisms and quality of aging in a cohort of nonagenarians—The MUGELLO Study. Sci. Rep. 2019;9:1–7. doi: 10.1038/s41598-018-37992-8.
    1. McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005.
    1. Neary D., Snowden J.S., Gustafson L., Passant U., Stuss D., Black S., Freedman M., Kertesz A., Robert P.H., Albert M., et al. Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–1554.
    1. Gorelick P.B., Scuteri A., Black S.E., Decarli C., Greenberg S.M., Iadecola C., Launer L.J., Laurent S., Lopez O.L., Nyenhuis D., et al. Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42:2672–2713. doi: 10.1161/STR.0b013e3182299496.
    1. Bracco L., Amaducci L., Pedone D., Bino G., Lazzaro M.P., Carella F., D’Antona R., Gallato R., Denes G. Italian Multicentre Study on Dementia (SMID): A neuropsychological test battery for assessing Alzheimer’s disease. J. Psychiatr. Res. 1990;24:213–226. doi: 10.1016/0022-3956(90)90011-E.
    1. Caffarra P., Vezzadini G., Dieci F., Zonato F., Venneri A. Rey-Osterrieth complex figure: Normative values in an Italian population sample. Neurol. Sci. 2002;22:443–447. doi: 10.1007/s100720200003.
    1. Baddeley A., Della Sala S., Papagno C., Spinnler H. Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology. 1997;11:187–194.
    1. Spinnler H., Tognoni G. Standardizzazione e Taratura Italian di Test Neuropsicologici: Gruppo Italiano per lo Studio Neuropsicologico Dell’invecchiamento. Masson Italia Periodici; Milano, Italy: 1987.
    1. Giovagnoli A.R., Del Pesce M., Mascheroni S., Simoncelli M., Laiacona M., Capitani E. Trail making test: Normative values from 287 normal adult controls. Ital. J. Neurol. Sci. 1996;17:305–309. doi: 10.1007/BF01997792.
    1. Brazzelli M., Della Sala S., Laiacona M. Taratura della versione italiana del Rivermead Behavioural Memory Test: Un test di valutazione ecologica della memoria. Giunti Organ. Spec. 1993;206:33–42.
    1. Colombo L., Sartori G., Brivio C. Stima del quoziente intellettivo tramite l’applicazione del TIB (Test Breve di Intelligenza) Giornale Italiano di Psicologia. 2002;29:613–638.
    1. Nelson H. National Adult Reading Test (NART): For the Assessment of Premorbid Intelligence in Patients with Dementia: Test Manual. Windsor; Windsor, UK: 1982.
    1. Hamilton M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry. 1960;23:56–62. doi: 10.1136/jnnp.23.1.56.
    1. Mishima K., Tozawa T., Satoh K., Saitoh H., Mishima Y. The 3111T/C polymorphism of hClock is associated with evening preference and delayed sleep timing in a Japanese population sample. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2005;133:101–104.
    1. Choub A., Mancuso M., Coppedè F., LoGerfo A., Orsucci D., Petrozzi L., DiCoscio E., Maestri M., Rocchi A., Bonanni E., et al. Clock T3111C and Per2 C111G SNPs do not influence circadian rhythmicity in healthy Italian population. Neurol. Sci. 2011;32:89–93. doi: 10.1007/s10072-010-0415-1.
    1. Saffroy R., Lafaye G., Desterke C., Ortiz-Tudela E., Amirouche A., Innominato P., Pham P., Benyamina A., Lemoine A. Several clock genes polymorphisms are meaningful risk factors in the development and severity of cannabis addiction. Chronobiol. Int. 2019;36:122–134. doi: 10.1080/07420528.2018.1523797.
    1. Becker-Krail D., McClung C. Implications of circadian rhythm and stress in addiction vulnerability. F1000Research. 2016;5:59.
    1. Perreau-Lenz S., Spanagel R. Clock genes × stress × reward interactions in alcohol and substance use disorders. Alcohol. 2015;49:351–357. doi: 10.1016/j.alcohol.2015.04.003.
    1. Bessi V., Giacomucci G., Mazzeo S., Bagnoli S., Padiglioni S., Balestrini J., Tomaiuolo G., Piaceri I., Carraro M., Bracco L., et al. Per2 C111G polymorphism influences cognition in Subjective Cognitive Decline and Mild Cognitive Impairment. A 10-year follow-up study. Eur. J. Neurol. under review.
    1. Bennet A.M., Di Angelantonio E., Ye Z., Wensley F., Dahlin A., Ahlbom A., Keavney B., Collins R., Wiman B., de Faire U., et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007;298:1300–1311. doi: 10.1001/jama.298.11.1300.
    1. Tang G., Wang D., Long J., Yang F., Si L. Meta-analysis of the association between whole grain intake and coronary heart disease risk. Am. J. Cardiol. 2015;115:625–629. doi: 10.1016/j.amjcard.2014.12.015.
    1. Gorelick P.B. Risk factors for vascular dementia and Alzheimer disease. Stroke. 2004;35:2620–2622. doi: 10.1161/01.STR.0000143318.70292.47.
    1. van der Flier W.M., Scheltens P. Epidemiology and risk factors of dementia. J. Neurol. Neurosurg. Psychiatry. 2005;76:v2–v7. doi: 10.1136/jnnp.2005.082867.
    1. Rawle M.J., Davis D., Bendayan R., Wong A., Kuh D., Richards M. Apolipoprotein-E (Apoe) ε4 and cognitive decline over the adult life course. Transl. Psychiatry. 2018;8:1–8. doi: 10.1038/s41398-017-0064-8.
    1. Xu W.-L., Caracciolo B., Wang H.-X., Santoni G., Winblad B., Fratiglioni L. Accelerated progression from mild cognitive impairment to dementia among APOE ε4ε4 carriers. J. Alzheimers Dis. JAD. 2013;33:507–515. doi: 10.3233/JAD-2012-121369.
    1. Hong Y.J., Yoon B., Shim Y.S., Kim S.-O., Kim H.J., Choi S.H., Jeong J.H., Yoon S.J., Yang D.W., Lee J.-H. Predictors of Clinical Progression of Subjective Memory Impairment in Elderly Subjects: Data from the Clinical Research Centers for Dementia of South Korea (CREDOS) Dement. Geriatr. Cogn. Disord. 2015;40:158–165. doi: 10.1159/000430807.
    1. Mazzeo S., Padiglioni S., Bagnoli S., Bracco L., Nacmias B., Sorbi S., Bessi V. The dual role of cognitive reserve in subjective cognitive decline and mild cognitive impairment: A 7-year follow-up study. J. Neurol. 2019;266:487–497. doi: 10.1007/s00415-018-9164-5.
    1. Salameh T.S., Rhea E.M., Banks W.A., Hanson A.J. Insulin resistance, dyslipidemia, and apolipoprotein E interactions as mechanisms in cognitive impairment and Alzheimer’s disease. Exp. Biol. Med. 2016;241:1676–1683.

Source: PubMed

3
Tilaa