Drug Combinations in Breast Cancer Therapy

Funmilola A Fisusi, Emmanuel O Akala, Funmilola A Fisusi, Emmanuel O Akala

Abstract

Breast cancer therapy involves a multidisciplinary approach comprising surgery, radiotherapy, neoadjuvant and adjuvant therapy. Effective therapy of breast cancer requires maximum therapeutic efficacy, with minimal undesirable effects to ensure a good quality of life for patients. The carefully selected combination of therapeutic interventions provides patients with the opportunity to derive maximum benefit from therapy while minimizing or eliminating recurrence, resistance and toxic effects, as well as ensuring that patients have a good quality of life. This review discusses therapeutic options for breast cancer treatments and various combinations that had been previously exploited. The review will also give an insight into the potential application of the nanotechnology platform for codelivery of therapeutics in breast cancer therapy.

Keywords: Breast cancer; chemotherapy; combination therapy; early breast cancer; metastatic breast cancer; nanotechnology; radiotherapy; surgery..

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.

Figures

Fig. (1)
Fig. (1)
Classification of breast cancer according to molecular subclasses. Key: BL = Basal-like; LA = Luminal-A; LB = Luminal-B; HER2+ = Human epidermal growth factor 2 (HER2)-positive/HER2-enriched/HER2-overexpressing BC; NL = Normal-like tumors.
Fig. (2)
Fig. (2)
Schematic representation of treatment strategies for breast cancer.
Fig. (3)
Fig. (3)
Schematic representation of main therapeutic combinations in BC treatment. Key: Chemo = chemotherapy; Horm = hormononal therapy; Immun = immunotherapy.

References

    1. Harbeck N., Gnant M. Breast cancer. Lancet. 2017;389(10074):1134–1150.
    1. Torre L.A., Siegel R.L., Ward E.M., Jemal A. Global cancer incidence and mortality rates and trends: an update. Cancer Epidemiol. Biomarkers Prev. 2016;25(1):16–27.
    1. Perou C.M., Sorlie T., Eisen M.B., et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–752.
    1. Prat A., Pineda E., Adamo B., et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015;24:S26–S35.
    1. Matta J., Ortiz C., Encarnacion J., Dutil J., Suarez E. Variability in dna repair capacity levels among molecular breast cancer subtypes: triple negative breast cancer shows lowest repair. Int. J. Mol. Sci. 2017;18(7)
    1. Cheang M.C.U., Voduc D., Bajdik C., et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin. Cancer Res. 2008;14(5):1368–1376.
    1. Leidy J., Khan A., Kandil D. Basal-like breast cancer: update on clinicopathologic, immunohistochemical, and molecular features. Arch. Pathol. Lab. Med. 2014;138(1):37–43.
    1. Lousberg L., Collignon J., Jerusalem G. Resistance to therapy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: progress with latest therapeutic strategies. Ther. Adv. Med. Oncol. 2016;8(6):429–449.
    1. Van’t Veer L.J., Dai H., van de Vijver M.J., et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–536.
    1. Sotiriou C., Neo S-Y., McShane L.M., et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl. Acad. Sci. USA. 2003;100(18):10393–10398.
    1. Prat A., Carey L.A., Adamo B., et al. Molecular features and survival outcomes of the intrinsic subtypes within HER2-positive breast cancer. J. Natl. Cancer Inst. 2014;106(8):152.
    1. Slamon D.J., Leyland-Jones B., Shak S., et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001;344(11):783–792.
    1. Blok E.J., Derks M.G.M., van der Hoeven J.J.M., van de Velde C.J.H., Kroep J.R. Extended adjuvant endocrine therapy in hormone-receptor positive early breast cancer: current and future evidence. Cancer Treat. Rev. 2015;41(3):271–276.
    1. Nuciforo P., Thyparambil S., Aura C., et al. High Her2 protein levels correlate with increased survival in breast cancer patients treated with anti-Her2 therapy. Mol. Oncol. 2016;10(1):138–147.
    1. Chew H.K. Adjuvant therapy for breast cancer: who should get what? West. J. Med. 2001;174(4):284–287.
    1. De Matteis A., Nuzzo F., D’Aiuto G., et al. Docetaxel plus epidoxorubicin as neoadjuvant treatment in patients with large operable or locally advanced carcinoma of the breast. Cancer. 2002;94(4):895–901.
    1. Giordano S.H. Update on locally advanced breast cancer. Oncologist. 2003;8(6):521–530.
    1. Wang M., Hou L., Chen M., et al. Neoadjuvant chemotherapy creates surgery opportunities for inoperable locally advanced breast cancer. Sci. Rep. 2017;7:44673.
    1. Tanaka S., Iwamoto M., Kimura K., et al. Phase ii study of neoadjuvant anthracycline-based regimens combined with nanoparticle albumin-bound paclitaxel and trastuzumab for human epidermal growth factor receptor 2-positive operable breast cancer. Clin. Breast Cancer. 2015;15(3):191–196.
    1. Kummel S., Holtschmidt J., Loibl S. Surgical treatment of primary breast cancer in the neoadjuvant setting. Br. J. Surg. 2014;101(8):912–924.
    1. Neuman H.B., Morrogh M., Gonen M., Van Z.K.J., Morrow M., King T.A. Stage IV breast cancer in the era of targeted therapy: does surgery of the primary tumor matter? Cancer. 2010;116(5):1226–1233.
    1. Hennigs A., Riedel F., Marmé F., et al. Changes in chemotherapy usage and outcome of early breast cancer patients in the last decade. Breast Cancer Res. Treat. 2016;160(3):491–499.
    1. Darby S., McGale P., Correa C., et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–1716.
    1. Roy V., Pockaj B.A., Allred J.B., et al. A Phase II trial of docetaxel and carboplatin administered every 2 weeks as preoperative therapy for stage Ii or Iii breast cancer: NCCTG study N0338. J. Clin. Oncol. 2013;36(6):540–544.
    1. Fisher B., Anderson S., Bryant J., et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N. Engl. J. Med. 2002;347(16):1233–1241.
    1. McLaughlin S.A. Surgical management of the breast: breast conservation therapy and mastectomy. Surg. Clin. North Am. 2013;93(2):411–428.
    1. Shaitelman S.F., Kim L.H. Accelerated partial-breast irradiation: the current state of our knowledge. Oncology. 2013;27(4):329–342.
    1. Hopwood P., Haviland J.S., Sumo G., Mills J., Bliss J.M., Yarnold J.R. Comparison of patient-reported breast, arm, and shoulder symptoms and body image after radiotherapy for early breast cancer: 5-year follow-up in the randomised standardisation of breast radiotherapy (start) trials. Lancet Oncol. 2010;11(3):231–240.
    1. Sardaro A., Petruzzelli M.F., D’Errico M.P., Grimaldi L., Pili G., Portaluri M. Radiation-induced cardiac damage in early left breast cancer patients: risk factors, biological mechanisms, radiobiology, and dosimetric constraints. Radiother. Oncol. 2012;103(2):133–142.
    1. Rakhra S., Bethke K., Strauss J., et al. Risk factors leading to complications in early-stage breast cancer following breast-conserving surgery and intraoperative radiotherapy. Ann. Surg. Oncol. 2016;24(5):1258–1261.
    1. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. •••;365(9472):1687–1717.
    1. Houssami N., Macaskill P., von Minckwitz G., Marinovich M.L., Mamounas E. Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur. J. Cancer. 2012;48(18):3342–3354.
    1. Rashid O.M., Takabe K. Does removal of the primary tumor in metastatic breast cancer improve survival? J Womens Health Wellness. 2014;23(2):184–188.
    1. Hortobagyi G.N. Treatment of breast cancer. N. Engl. J. Med. 1998;339(14):974–984.
    1. Sachdev J.C., Jahanzeb M. Use of cytotoxic chemotherapy in metastatic breast cancer: putting taxanes in perspective. Clin. Breast Cancer. 2016;16(2):73–81.
    1. Vrdoljak E., Boban M., Omrcen T., Hrepic D., Fridl-Vidas V., Boskovic L. Combination of capecitabine and mitomycin C as first-line treatment in patients with metastatic breast cancer. Neoplasma. 2011;58(2):172–178.
    1. Tanabe M. Combination chemotherapy of mitomycin C and methotrexate was effective on metastatic breast cancer resistant to eribulin, vinorelbine, and bevacizumab after anthracycline, taxane, and capecitabine. Case Rep. Oncol. 2016;9(2):422–426.
    1. Greenberg P.A., Hortobagyi G.N., Smith T.L., Ziegler L.D., Frye D.K., Buzdar A.U. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J. Clin. Oncol. 1996;14(8):2197–2205.
    1. Tomiak E., Piccart M., Mignolet F., et al. Characterisation of complete responders to combination chemotherapy for advanced breast cancer: a retrospective eortc breast group study. Eur. J. Cancer. 1996;32a(11):1876–1887.
    1. Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Biochem. Behav. 2006;58(3):621–681.
    1. Foucquier J., Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacol. Res. Perspect. 2015;3(3):e00149.
    1. Yuan R., Lin Y. Traditional Chinese medicine: an approach to scientific proof and clinical validation. Pharmacol. Ther. 2000;86(2):191–198.
    1. Bonadonna G., Brusamolino E., Valagussa P., et al. Combination chemotherapy as an adjuvant treatment in operable breast cancer. N. Engl. J. Med. 1976;294(8):405–410.
    1. Pronzato P., Rondini M. First line chemotherapy of metastatic breast cancer. Ann. Oncol. 2006;17:v165–v8.
    1. Anampa J., Makower D., Sparano J.A. Progress in adjuvant chemotherapy for breast cancer: an overview. BMC Med. 2015;13(1):195.
    1. Keith C.T., Borisy A.A., Stockwell B.R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov. 2005;4(1):71–78.
    1. Heys S.D., Hutcheon A.W., Sarkar T.K., et al. Neoadjuvant docetaxel in breast cancer: 3-Year Survival Results from the Aberdeen trial. Clin. Breast Cancer. 2002;3:S69–S74.
    1. Malhotra V., Dorr V.J., Lyss A.P., et al. Neoadjuvant and adjuvant chemotherapy with doxorubicin and docetaxel in locally advanced breast cancer. Clin. Breast Cancer. 2004;5(5):377–384.
    1. Colleoni M., Goldhirsch A. Neoadjuvant chemotherapy for breast cancer: any progress? Lancet Oncol. 2014;15(2):131–132.
    1. Kaufmann M., von Minckwitz G., Mamounas E.P., et al. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann. Surg. Oncol. 2012;19(5):1508–1516.
    1. Bear H.D., Anderson S., Brown A., et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from national surgical adjuvant breast and bowel project protocol B-27. J. Clin. Oncol. 2003;21(22):4165–4174.
    1. Earl H.M., Vallier A.L., Hiller L., et al. Effects of the addition of gemcitabine, and paclitaxel-first sequencing, in neoadjuvant sequential epirubicin, cyclophosphamide, and paclitaxel for women with high-risk early breast cancer (neo-tango): an open-label, 2x2 factorial randomised phase 3 trial. Lancet Oncol. 2014;15(2):201–212.
    1. von Minckwitz G., Untch M., Blohmer J.U., et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 2012;30(15):1796–1804.
    1. Buzdar A.U., Suman V.J., Meric-Bernstam F., et al. fluorouracil, epirubicin, and cyclophosphamide (fec-75) followed by paclitaxel plus trastuzumab versus paclitaxel plus trastuzumab followed by fec-75 plus trastuzumab as neoadjuvant treatment for patients with HER2-positive breast cancer (Z1041): a randomised, controlled, phase 3 trial. Lancet Oncol. 2013;14(13):1317–1325.
    1. Abrams J.S. Adjuvant therapy for breast cancer--results from the USA consensus conference. Breast Cancer. 2001;8(4):298–304.
    1. Early breast cancer trialists’ collaborative group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Early breast cancer trialists’ collaborative group. Lancet. 1998;352(9132):930–942.
    1. Fisher B., Dignam J., Wolmark N., et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J. Natl. Cancer Inst. 1997;89(22):1673–1682.
    1. Fisher B., Redmond C., Wickerham D.L., et al. Doxorubicin-containing regimens for the treatment of stage ii breast cancer: the national surgical adjuvant breast and bowel project experience. J. Clin. Oncol. 1989;7(5):572–582.
    1. Fisher B., Brown A.M., Dimitrov N.V., et al. Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the national surgical adjuvant breast and bowel project B-15. J. Clin. Oncol. 1990;8(9):1483–1496.
    1. Hortobagyi G.N., Blumenschein G.R., Spanos W., et al. Multimodal treatment of locoregionally advanced breast cancer. Cancer. 1983;51(5):763–768.
    1. French Epirubicin Study Group A prospective randomized phase Iii trial comparing combination chemotherapy with cyclophosphamide, fluorouracil, and either doxorubicin or epirubicin. French epirubicin study group. J. Clin. Oncol. 1988;6(4):679–688.
    1. French adjuvant study group. Benefit of a high-dose epirubicin regimen in adjuvant chemotherapy for node-positive breast cancer patients with poor prognostic factors: 5-year follow-up results of French adjuvant study group 05 randomized trial. J. Clin. Oncol. 2001;19(3):602–611.
    1. Creagan E.T., Green S.J., Ahmann D.L., Ingle J.N., Edmonson J.H., Jr R.F.M. A phase Iii clinical trial comparing the combination cyclophosphamide, adriamycin, cisplatin with cyclophosphamide, 5-fluorouracil, prednisone in patients with advanced breast cancer. J. Clin. Oncol. 1984;2(11):1260–1265.
    1. Saphner T., Tormey D.C., Albertini M. Continuous infusion 5-fluorouracil with escalating doses of intermittent cisplatin and etoposide. A phase I study. Cancer. 1991;68(11):2359–2362.
    1. Trump D.L., Ettinger D.S., Doxorubicin M.D.A. vincristine, and cis-diamminedichloroplatinum (Ii) therapy in patients with advanced breast cancer. Med. Pediatr. Oncol. •••;981(9):1–3.
    1. Martoni A., Tomasi L., Farabegoli G., et al. A phase II study of 4′-epi-doxorubicin plus cis-platinum in advanced solid tumors. Eur. J. Cancer Clin. Oncol. 1984;20(1):11–17.
    1. Smith I.E., Talbot D.C. Cisplatin and Its analogues in the treatment of advanced breast cancer: a review. Br. J. Cancer. 1992;65(6):787–793.
    1. Bonneterre J., Dieras V., Tubiana-Hulin M., et al. Phase II multicentre randomised study of docetaxel plus epirubicin vs. 5-fluorouracil plus epirubicin and cyclophosphamide in metastatic breast cancer. Br. J. Cancer. 2004;91(8):1466–1471.
    1. Donehower R.C., Rowinsky E.K. An overview of experience with taxol* (paclitaxel) in the U.S.A. Cancer Treat. Rev. 1993;19:63–78.
    1. Hortobagyi G.N. Paclitaxel-based combination chemotherapy for breast cancer. Oncology. 1997;11:29–37.
    1. Gianni L., Munzone E., Capri G., et al. Paclitaxel by 3-hour infusion in combination with bolus doxorubicin in women with untreated metastatic breast cancer: high antitumor efficacy and cardiac effects in a dose-finding and sequence-finding study. J. Clin. Oncol. 1995;13(11):2688–2699.
    1. Wasserheit C., Frazein A., Oratz R., et al. Phase ii trial of paclitaxel and cisplatin in women with advanced breast cancer: an active regimen with limiting neurotoxicity. J. Clin. Oncol. 1996;14(7):1993–1999.
    1. Gelmon K.A., O’Reilly S.E., Tolcher A.W., et al. Phase I/II trial of biweekly paclitaxel and cisplatin in the treatment of metastatic breast cancer. J. Clin. Oncol. 1996;14(4):1185–1191.
    1. Esteva F.J., Valero V., Pusztai L., Boehnke-Michaud L., Buzdar A.U., Hortobagyi G.N. Chemotherapy of metastatic breast cancer: what to expect in 2001 and beyond. Oncologist. 2001;6(2):133–146.
    1. Nabholtz J-M., Falkson C., Campos D., et al. Docetaxel and doxorubicin compared with doxorubicin and cyclophosphamide as first-line chemotherapy for metastatic breast cancer: results of a randomized, multicenter, phase III Trial. J. Clin. Oncol. 2003;21(6):968–975.
    1. Smith R.E., Anderson S.J., Lembersky B.C., Brown A., Mamounas E.P. Phase ii trial of a doxorubicin/docetaxel doublet for locally advanced and metastatic breast cancer: results from national surgical adjuvant breast and bowel project trial Bp-57. Clin. Breast Cancer. 2004;5(3):208–215.
    1. Sessa C., Pagani O. Docetaxel and epirubicin in advanced breast cancer. Oncologist. 2001;6:13–16.
    1. Trudeau M.E., Chapman J-A.W., Guo B., et al. A phase I/II trial of epirubicin and docetaxel in locally advanced breast cancer (labc) on 2-weekly or 3-weekly schedules: NCIC CTG MA.22. Springerplus. 2015;4(1):631.
    1. Park S.H., Cho E.K., Bang S-M., Shin D.B., Lee J.H., Lee Y.D. Docetaxel plus cisplatin is effective for patients with metastatic breast cancer resistant to previous anthracycline treatment: a phase II clinical trial. BMC Cancer. 2005;5:21.
    1. Andrez J-C. Mitomycins syntheses: a recent update. Beilstein J. Org. Chem. 2009;5:33.
    1. Colozza M., Tonato M., Grignani F., Davis S. Low-dose mitomycin and weekly low-dose doxorubicin combination chemotherapy for patients with metastatic breast carcinoma previously treated with cyclophosphamide, methotrexate, and 5-fluorouracil. Cancer. 1988;62(2):262–265.
    1. Panasci L., Shenouda G., Begin L., Pollak M., Reinke A., Margolese R. Mitomycin C and mitoxantrone chemotherapy for advanced breast cancer: efficacy with minimal gastrointestinal toxicity and alopecia. Cancer Chemother. Pharmacol. 1990;26(6):457–460.
    1. Ospovat I., Siegelmann-Danieli N., Grenader T., Hubert A., Hamburger T., Peretz T. Mitomycin C and vinblastine: an active regimen in previously treated breast cancer patients. Tumori. 2009;95(6):683–686.
    1. Tanabe M., Ito Y., Tokudome N., et al. Possible use of combination chemotherapy with mitomycin C and methotrexate for metastatic breast cancer pretreated with anthracycline and taxanes. Breast Cancer. 2009;16(4):301.
    1. Fukuda T., Tanabe M., Kobayashi K., et al. Combination chemotherapy with mitomycin C and methotrexate is active against metastatic HER2-negative breast cancer even after treatment with anthracycline, taxane, capecitabine, and vinorelbine. Springerplus. 2015;4(1):376.
    1. Gómez H.L., Neciosup S., Tosello C., et al. A phase II randomized study of lapatinib combined with capecitabine, vinorelbine, or gemcitabine in patients with HER2-positive metastatic breast cancer with progression after a taxane (latin american cooperative oncology group 0801 study). Clin. Breast Cancer. 2016;16(1):38–44.
    1. Yardley D.A., Ward P.J., Daniel B.R., et al. Panitumumab, gemcitabine, and carboplatin as treatment for women with metastatic triple-negative breast cancer: a sarah cannon research institute phase II trial. Clin. Breast Cancer. 2016;16(5):349–355.
    1. Cinieri S., Chan A., Altundag K., et al. Final results of the randomized phase Ii norcap-ca223 trial comparing first-line all-oral versus taxane-based chemotherapy for HER2-negative metastatic breast cancer. Clin. Breast Cancer. 2017;17(2):91–99.
    1. Schroder L., Rack B., Sommer H., et al. Toxicity assessment of a phase Iii study evaluating fec-doc and fec-doc combined with gemcitabine as an adjuvant treatment for high-risk early breast cancer: the success-a trial. Geburtshilfe Frauenheilkd. 2016;76(5):542–550.
    1. Earl H.M., Hiller L., Howard H.C., et al. Addition of gemcitabine to paclitaxel, epirubicin, and cyclophosphamide adjuvant chemotherapy for women with early-stage breast cancer (tango): final 10-year follow-up of an open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18(6):755–769.
    1. Lu X., Xiao L., Wang L., Ruden D.M. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem. Pharmacol. 2012;83(8):995–1004.
    1. Modi S., Stopeck A.T., Gordon M.S., et al. Combination of trastuzumab and tanespimycin (17-aag, kos-953) is safe and active in trastuzumab-refractory her-2-overexpressing breast cancer: a phase I dose-escalation study. J. Clin. Oncol. 2007;25(34):5410–5417.
    1. Modi S., Stopeck A., Linden H., et al. Hsp90 inhibition is effective in breast cancer: a phase ii trial of tanespimycin (17-aag) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin. Cancer Res. 2011;17(15):5132–5139.
    1. Baselga J., Cortés J., Kim S-B., et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. new england journal of medicine. N. Engl. J. Med. 2012;366(2):109–119.
    1. Swain S.M., Kim S-B., Cortés J., et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (Cleopatra study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2013;14(6):461–471.
    1. Swain S.M., Ewer M.S., Cortés J., et al. Cardiac tolerability of pertuzumab plus trastuzumab plus docetaxel in patients with HER2-positive metastatic breast cancer in Cleopatra: a randomized, double-blind, placebo-controlled phase III Study. Oncologist. 2013;18(3):257–264.
    1. Swain S.M., Baselga J., Kim S.B. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 2015;372(8):724–734.
    1. Bhaskar S., Tian F., Stoeger T., et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part. Fibre Toxicol. 2010;7(1):3.
    1. Drbohlavova J., Chomoucka J., Adam V., et al. Nanocarriers for anticancer drugs-new trends in nanomedicine. Curr. Drug Metab. 2013;14(5):547–564.
    1. Su H., Wang Y., Gu Y., Bowman L., Zhao J., Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J. Appl. Toxicol. 2018;38(1):3–24.
    1. Davis M.E., Chen Z. DM. S. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008;7(9):771–782.
    1. Ma L., Kohli M., Smith A. Nanoparticles for combination drug therapy. ACS Nano. 2013;7(11):9518–9525.
    1. Shuhendler A.J., Cheung R.Y., Manias J., Connor A., Rauth A.M., Wu X.Y. A novel doxorubicin-mitomycin c co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells. Breast Cancer Res. Treat. 2009;119(2):255.
    1. Prasad P., Shuhendler A., Cai P., Rauth A.M., Wu X.Y. Doxorubicin and mitomycin c co-loaded polymer-lipid hybrid nanoparticles inhibit growth of sensitive and multidrug resistant human mammary tumor xenografts. Cancer Lett. 2013;334(2):263–273.
    1. Zhang R.X., Cai P., Zhang T., et al. Polymer-lipid hybrid nanoparticles synchronize pharmacokinetics of co-encapsulated doxorubicin-mitomycin c and enable their spatiotemporal co-delivery and local bioavailability in breast tumor. Nanomedicine. 2016;12(5):1279–1290.
    1. Hasenstein J.R., Shin H-C., Kasmerchak K., Buehler D., Kwon G.S., Kozak K.R. Anti-tumor activity of triolimus: a novel multi-drug loaded micelle containing paclitaxel, rapamycin and 17-Aag. Mol. Cancer Ther. 2012;11(10):2233–2242.
    1. Yu D., Li W., Zhang Y., Zhang B. Anti-tumor efficiency of paclitaxel and dna when co-delivered by ph responsive ligand modified nanocarriers for breast cancer treatment. Biomed. Pharmacother. 2016;83:1428–1435.
    1. Rong L., Zhou S., Liu X., et al. Trastuzumab-modified dm1-loaded nanoparticles for HER2(+) breast cancer treatment: an in Vitro and in Vivo Study. Artif. Cells Nanomed. Biotechnol. 2017;46(8):1–11.
    1. Varshosaz J., Davoudi M.A., Rasoul-Amini S. Docetaxel-loaded nanostructured lipid carriers functionalized with trastuzumab (herceptin) for HER2-positive breast cancer cells. J. Liposome Res. 2017;28(4):1–11.
    1. Li L., Tong R., Li M., Kohane D.S. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy. Acta Biomater. 2016;33:34–39.
    1. De Souza Albernaz M., Toma S.H., Clanton J., Araki K., Santos-Oliveira R. Decorated superparamagnetic iron oxide nanoparticles with monoclonal antibody and diethylene-triamine-pentaacetic acid labeled with thechnetium-99m and galium-68 for breast cancer imaging. Pharm. Res. 2018;35(1):24.
    1. Tezuka K., Takashima T., Kashiwagi S., et al. Phase I study of nanoparticle albumin-bound paclitaxel, carboplatin and trastuzumab in women with human epidermal growth factor receptor 2-overexpressing breast cancer. Mol. Clin. Oncol. 2017;6(4):534–538.
    1. Lee J.H., Nan A. Combination drug delivery approaches in metastatic breast cancer. J. Drug Deliv. 2012;2012:17.
    1. Hu C-M.J., Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 2012;83(8):1104–1111.
    1. Sparreboom A., Baker S.D., Verweij J. Paclitaxel in an albumin-stabilized nanoparticle: handy or just a dandy? J. Clin. Oncol. 2005;23(31):7765–7767.
    1. Akala EO, Okunola O. 2013.
    1. Adesina S.K., Wight S.A., Akala E.O. Optimization of the fabrication of novel stealth PLA-based nanoparticles by dispersion polymerization using D-optimal mixture design. Drug Dev Ind Pharm Drug Dev Ind Pharm. 2014;40(11):1547–1556.
    1. Adesina S.K., Holly A., Kramer-Marek G., Capala J., Akala E.O. Polylactide based paclitaxel loaded nanoparticles fabricated by dispersion polymerization: characterization, evaluation in cancer cell lines, and preliminary biodistribution studies. J. Pharm. Sci. 2014;103(8):2546–2555.
    1. Ogunwuyi O., Adesina S.K., Akala E.O. D-optimal mixture experimental design for stealth biodegradable crosslinked docetaxel-loaded poly-E-caprolactone nanoparticles fabricated by dispersion polymerization. Pharmazie. 2015;70:165–176.
    1. Oluwaseun O., Namita K., Kahli A.S., et al. Antiretroviral drugs-loaded nanoparticles fabricated by dispersion polymerization with potential for HIV/AIDS treatment. Infect Dis: Res Treat. 2016;9:21–32.
    1. Puri R., Berhe S.A., Akala E.O. pH-sensitive polymeric nanoparticles fabricated by dispersion polymerization for the delivery of bioactive agents. Pharm. Nanotechnol. 2017;5:1–28.
    1. Puri Reema, Adesina Simeon. 2018.
    1. von Roemeling C., Jiang W., Chan C.K., Weissman I.L., Kim B.Y. Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol. 2017;35(2):159–171.
    1. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14:282–295.
    1. Emmanuel O.A., Simeon K.A. Fabrication of polymeric core-shell nanostructures. In: Grumezescu A.M., editor. Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. Oxford: Elsevier; 2017. pp. 1–49.
    1. Choi H.S., Ipe B.I., Misra P., Lee J.H., Bawendi M.G., Frangioni J.V. Tissue-and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 2009;9(6):2354–2359.
    1. Harris J.M., Chess R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003;2:214–221.
    1. Schöttler S., Becker G., Winzen S., et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated Nanocarriers. Nat. Nanotechnol. 2016;11:372–377.
    1. Carl D.W., Jonathan B.O., Hongbo G., Andrew E., Warren C.W.C. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012;134:2139–2147.
    1. Niewoehner J.B.B., Ludovic C., Eduard U., Hadassah S., Peter M., Petra R. 2 increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81:49–60.

Source: PubMed

3
Tilaa