Safety of single low-dose primaquine in glucose-6-phosphate dehydrogenase deficient falciparum-infected African males: Two open-label, randomized, safety trials

Guido J H Bastiaens, Alfred B Tiono, Joseph Okebe, Helmi E Pett, Sam A Coulibaly, Bronner P Gonçalves, Muna Affara, Alphonse Ouédraogo, Edith C Bougouma, Guillaume S Sanou, Issa Nébié, John Bradley, Kjerstin H W Lanke, Mikko Niemi, Sodiomon B Sirima, Umberto d'Alessandro, Teun Bousema, Chris Drakeley, Guido J H Bastiaens, Alfred B Tiono, Joseph Okebe, Helmi E Pett, Sam A Coulibaly, Bronner P Gonçalves, Muna Affara, Alphonse Ouédraogo, Edith C Bougouma, Guillaume S Sanou, Issa Nébié, John Bradley, Kjerstin H W Lanke, Mikko Niemi, Sodiomon B Sirima, Umberto d'Alessandro, Teun Bousema, Chris Drakeley

Abstract

Background: Primaquine (PQ) actively clears mature Plasmodium falciparum gametocytes but in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals can cause hemolysis. We assessed the safety of low-dose PQ in combination with artemether-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP) in G6PDd African males with asymptomatic P. falciparum malaria.

Methods and findings: In Burkina Faso, G6PDd adult males were randomized to treatment with AL alone (n = 10) or with PQ at 0.25 (n = 20) or 0.40 mg/kg (n = 20) dosage; G6PD-normal males received AL plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. In The Gambia, G6PDd adult males and boys received DP alone (n = 10) or with 0.25 mg/kg PQ (n = 20); G6PD-normal males received DP plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. The primary study endpoint was change in hemoglobin concentration during the 28-day follow-up. Cytochrome P-450 isoenzyme 2D6 (CYP2D6) metabolizer status, gametocyte carriage, haptoglobin, lactate dehydrogenase levels and reticulocyte counts were also determined. In Burkina Faso, the mean maximum absolute change in hemoglobin was -2.13 g/dL (95% confidence interval [CI], -2.78, -1.49) in G6PDd individuals randomized to 0.25 PQ mg/kg and -2.29 g/dL (95% CI, -2.79, -1.79) in those receiving 0.40 PQ mg/kg. In The Gambia, the mean maximum absolute change in hemoglobin concentration was -1.83 g/dL (95% CI, -2.19, -1.47) in G6PDd individuals receiving 0.25 PQ mg/kg. After adjustment for baseline concentrations, hemoglobin reductions in G6PDd individuals in Burkina Faso were more pronounced compared to those in G6PD-normal individuals receiving the same PQ doses (P = 0.062 and P = 0.022, respectively). Hemoglobin levels normalized during follow-up. Abnormal haptoglobin and lactate dehydrogenase levels provided additional evidence of mild transient hemolysis post-PQ.

Conclusions: Single low-dose PQ in combination with AL and DP was associated with mild and transient reductions in hemoglobin. None of the study participants developed moderate or severe anemia; there were no severe adverse events. This indicates that single low-dose PQ is safe in G6PDd African males when used with artemisinin-based combination therapy.

Trial registration: Clinicaltrials.gov NCT02174900 Clinicaltrials.gov NCT02654730.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1
Clinical trial profile for Burkina Faso (A) and The Gambia (B). Abbreviations: AL, artemether-lumefantrine; G6PD, glucose-6-phosphate dehydrogenase; PQ, primaquine; DP, dihydroartemisinin-piperaquine.
Fig 2
Fig 2
Hemoglobin levels during 28-day follow-up Burkina Faso (A) and The Gambia (B). Hemoglobin concentrations (g/dL) during follow-up are expressed relative to that at enrolment for each individual (grey dotted lines) and for each treatment group (colored lines). Abbreviations: 0M, day 0 morning; 0A, day 0 afternoon, etc.; Hb, hemoglobin; G6PD, glucose-6-phosphate dehydrogenase; PQ, primaquine; AL, artemether-lumefantrine; DP, dihydroartemisinin-piperaquine.
Fig 3
Fig 3
Absolute changes in hemoglobin levels during 28-day follow-up for Burkina Faso (A) and The Gambia (B). Hemoglobin concentrations (g/dL) on days 3, 7, 14 and 28 during follow-up are expressed relative to that at enrolment for each treatment group. Asterisks indicate a statistically significant reduction compared to baseline by repeated measures mixed models. Abbreviations: Hb, hemoglobin; G6PD, glucose-6-phosphate dehydrogenase; PQ, primaquine.
Fig 4
Fig 4
Absolute reticulocyte counts during 28-day follow-up for Burkina Faso (A) and The Gambia (B). Absolute reticulocyte counts (x103/μL) during follow-up are expressed relative to that at enrolment for each individual (grey dotted lines) and for each treatment group (colored lines). The value not displayed in the G6PD-deficient 0.40 mg/kg PQ group was 216 x103/μL. Abbreviations: 0M, day 0 morning; 0A, day 0 afternoon, etc.; G6PD, glucose-6-phosphate dehydrogenase; PQ, primaquine; AL, artemether-lumefantrine; DP, dihydroartemisinin-piperaquine.
Fig 5. Haptoglobin, lactate dehydrogenase (LDH) and…
Fig 5. Haptoglobin, lactate dehydrogenase (LDH) and total bilirubin levels as parameters of hemolysis during follow-up in Burkina Faso.
Each individual represents one vertical column. Abnormal levels were defined as: haptoglobin

References

    1. World Health Organization. World Malaria Report 2016. Geneva: WHO: 2016.
    1. malERA Consultative Group on Diagnoses and Diagnostics. A research agenda for malaria eradication: diagnoses and diagnostics. PLoS Med. 2011;8(1):e1000396 doi: ; PubMed Central PMCID: PMC3026696.
    1. Sinclair D, Zani B, Donegan S, Olliaro P, Garner P. Artemisinin-based combination therapy for treating uncomplicated malaria. Cochrane Database Syst Rev. 2009;(3):CD007483 doi: .
    1. Okell LC, Drakeley CJ, Ghani AC, Bousema T, Sutherland CJ. Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials. Malar J. 2008;7:125 doi: ; PubMed Central PMCID: PMCPMC2491628.
    1. Adjalley SH, Johnston GL, Li T, Eastman RT, Ekland EH, Eappen AG, et al. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc Natl Acad Sci U S A. 2011;108(47):E1214–23. doi: ; PubMed Central PMCID: PMCPMC3223476.
    1. Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clinical microbiology reviews. 2011;24(2):377–410. Epub 2011/04/13. doi: ; PubMed Central PMCID: PMC3122489.
    1. Targett G, Drakeley C, Jawara M, von Seidlein L, Coleman R, Deen J, et al. Artesunate reduces but does not prevent posttreatment transmission of Plasmodium falciparum to Anopheles gambiae. J Infect Dis. 2001;183(8):1254–9. doi: .
    1. Sawa P, Shekalaghe SA, Drakeley CJ, Sutherland CJ, Mweresa CK, Baidjoe AY, et al. Malaria transmission after artemether-lumefantrine and dihydroartemisinin-piperaquine: a randomized trial. J Infect Dis. 2013;207(11):1637–45. doi: .
    1. White NJ. Primaquine to prevent transmission of falciparum malaria. Lancet Infect Dis. 2013;13(2):175–81. Epub 2012/11/28. doi: .
    1. Baird JK, Hoffman SL. Primaquine therapy for malaria. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2004;39(9):1336–45. Epub 2004/10/21. doi: .
    1. Eziefula AC, Bousema T, Yeung S, Kamya M, Owaraganise A, Gabagaya G, et al. Single dose primaquine for clearance of Plasmodium falciparum gametocytes in children with uncomplicated malaria in Uganda: a randomised, controlled, double-blind, dose-ranging trial. Lancet Infect Dis. 2014;14(2):130–9. doi: .
    1. Goncalves BP, Tiono AB, Ouedraogo A, Guelbeogo WM, Bradley J, Nebie I, et al. Single low dose primaquine to reduce gametocyte carriage and Plasmodium falciparum transmission after artemether-lumefantrine in children with asymptomatic infection: a randomised, double-blind, placebo-controlled trial. BMC Med. 2016;14:40 doi: ; PubMed Central PMCID: PMCPMC4782330.
    1. Dicko A, Brown JM, Diawara H, Baber I, Mahamar A, Soumare HM, et al. Primaquine to reduce transmission of Plasmodium falciparum malaria in Mali: a single-blind, dose-ranging, adaptive randomised phase 2 trial. Lancet Infect Dis. 2016. doi: .
    1. Okebe J, Bousema T, Affara M, DiTanna G, Eziefula AC, Jawara M, et al. The gametocytocidal efficacy of primaquine in malaria asymptomatic carriers treated with dihydroartemisinin-piperaquine in The Gambia (PRINOGAM): study protocol for a randomised controlled trial. Trials. 2015;16:70 doi: ; PubMed Central PMCID: PMC4349754.
    1. World Health Organization. Guidelines for the treatment of malaria - 3rd edition Geneva: WHO: 2015.
    1. Shekalaghe SA, ter Braak R, Daou M, Kavishe R, van den Bijllaardt W, van den Bosch S, et al. In Tanzania, hemolysis after a single dose of primaquine coadministered with an artemisinin is not restricted to glucose-6-phosphate dehydrogenase-deficient (G6PD A-) individuals. Antimicrob Agents Chemother. 2010;54(5):1762–8. Epub 2010/03/03. doi: ; PubMed Central PMCID: PMC2863610.
    1. Alving AS, Johnson CF, Tarlov AR, Brewer GJ, Kellermeyer RW, Carson PE. Mitigation of the haemolytic effect of primaquine and enhancement of its action against exoerythrocytic forms of the Chesson strain of Piasmodium vivax by intermittent regimens of drug administration: a preliminary report. Bulletin of the World Health Organization. 1960;22:621–31. Epub 1960/01/01. PubMed ; PubMed Central PMCID: PMC2555355.
    1. Reeve PA, Toaliu H, Kaneko A, Hall JJ, Ganczakowski M. Acute intravascular haemolysis in Vanuatu following a single dose of primaquine in individuals with glucose-6-phosphate dehydrogenase deficiency. The Journal of tropical medicine and hygiene. 1992;95(5):349–51. Epub 1992/10/01. PubMed .
    1. Betuela I, Bassat Q, Kiniboro B, Robinson LJ, Rosanas-Urgell A, Stanisic D, et al. Tolerability and safety of primaquine in Papua New Guinean children 1 to 10 years of age. Antimicrobial agents and chemotherapy. 2012;56(4):2146–9. doi: ; PubMed Central PMCID: PMC3318393.
    1. Sutanto I, Tjahjono B, Basri H, Taylor WR, Putri FA, Meilia RA, et al. Randomized, open-label trial of primaquine against vivax malaria relapse in Indonesia. Antimicrobial agents and chemotherapy. 2013;57(3):1128–35. doi: ; PubMed Central PMCID: PMC3591862.
    1. Nelwan EJ, Ekawati LL, Tjahjono B, Setiabudy R, Sutanto I, Chand K, et al. Randomized trial of primaquine hypnozoitocidal efficacy when administered with artemisinin-combined blood schizontocides for radical cure of Plasmodium vivax in Indonesia. BMC Med. 2015;13:294 doi: ; PubMed Central PMCID: PMC4676167.
    1. Shekalaghe S, Drakeley C, Gosling R, Ndaro A, van Meegeren M, Enevold A, et al. Primaquine clears submicroscopic Plasmodium falciparum gametocytes that persist after treatment with sulphadoxine-pyrimethamine and artesunate. PLoS One. 2007;2(10):e1023 Epub 2007/10/11. doi: ; PubMed Central PMCID: PMC1995753.
    1. Eziefula AC, Pett H, Grignard L, Opus S, Kiggundu M, Kamya MR, et al. Glucose-6-phosphate dehydrogenase status and risk of hemolysis in Plasmodium falciparum-infected African children receiving single-dose primaquine. Antimicrob Agents Chemother. 2014;58(8):4971–3. doi: ; PubMed Central PMCID: PMC4136063.
    1. Bancone G, Chowwiwat N, Somsakchaicharoen R, Poodpanya L, Moo PK, Gornsawun G, et al. Single low dose primaquine (0.25mg/kg) does not cause clinically significant haemolysis in G6PD deficient subjects. PLoS One. 2016;11(3):e0151898 doi: ; PubMed Central PMCID: PMCPMC4807095.
    1. Mwaiswelo R, Ngasala BE, Jovel I, Gosling R, Premji Z, Poirot E, et al. Safety of a single low-dose of primaquine in addition to standard artemether-lumefantrine regimen for treatment of acute uncomplicated Plasmodium falciparum malaria in Tanzania. Malar J. 2016;15:316 doi: ; PubMed Central PMCID: PMCPMC4901409.
    1. Tine RC, Sylla K, Faye BT, Poirot E, Fall FB, Sow D, et al. Safety and efficacy of adding a single low dose of primaquine to the treatment of adult patients with Plasmodium falciparum malaria in Senegal, to reduce gametocyte carriage: a randomized controlled trial. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2017. doi: .
    1. Eziefula AC, Gosling R, Hwang J, Hsiang MS, Bousema T, von Seidlein L, et al. Rationale for short course primaquine in Africa to interrupt malaria transmission. Malar J. 2012;11:360 doi: ; PubMed Central PMCID: PMC3502539.
    1. Beutler E, Blume KG, Kaplan JC, Lohr GW, Ramot B, Valentine WN. International Committee for Standardization in Haematology: recommended screening test for glucose-6-phosphate dehydrogenase (G-6-PD) deficiency. Br J Haematol. 1979;43(3):465–7. PubMed .
    1. Pett H, Goncalves BP, Dicko A, Nebie I, Tiono AB, Lanke K, et al. Comparison of molecular quantification of Plasmodium falciparum gametocytes by Pfs25 qRT-PCR and QT-NASBA in relation to mosquito infectivity. Malar J. 2016;15(1):539 doi: ; PubMed Central PMCID: PMC5100312.
    1. Bennett JW, Pybus BS, Yadava A, Tosh D, Sousa JC, McCarthy WF, et al. Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. N Engl J Med. 2013;369(14):1381–2. doi: .
    1. Pybus BS, Marcsisin SR, Jin X, Deye G, Sousa JC, Li Q, et al. The metabolism of primaquine to its active metabolite is dependent on CYP 2D6. Malar J. 2013;12:212 doi: ; PubMed Central PMCID: PMCPMC3689079.
    1. Potter BM, Xie LH, Vuong C, Zhang J, Zhang P, Duan D, et al. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics. Antimicrob Agents Chemother. 2015;59(4):2380–7. doi: ; PubMed Central PMCID: PMCPMC4356838.
    1. Sim SC, Daly AK, Gaedigk A. CYP2D6 update: revised nomenclature for CYP2D7/2D6 hybrid genes. Pharmacogenet Genomics. 2012;22(9):692–4. doi: .
    1. Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther. 2008;83(2):234–42. doi: .
    1. Hicks JK, Swen JJ, Gaedigk A. Challenges in CYP2D6 phenotype assignment from genotype data: a critical assessment and call for standardization. Curr Drug Metab. 2014;15(2):218–32. PubMed .
    1. St Jean PL, Xue Z, Carter N, Koh GC, Duparc S, Taylor M, et al. Tafenoquine treatment of Plasmodium vivax malaria: suggestive evidence that CYP2D6 reduced metabolism is not associated with relapse in the Phase 2b DETECTIVE trial. Malar J. 2016;15:97 doi: ; PubMed Central PMCID: PMCPMC4757974.
    1. Sumbele IU, Kimbi HK, Ndamukong-Nyanga JL, Nweboh M, Anchang-Kimbi JK, Lum E, et al. Malarial anaemia and anaemia severity in apparently healthy primary school children in urban and rural settings in the Mount Cameroon area: cross sectional survey. PloS one. 2015;10(4):e0123549 doi: ; PubMed Central PMCID: PMC4403990.
    1. Marchand A, Galen RS, Van Lente F. The predictive value of serum haptoglobin in hemolytic disease. JAMA. 1980;243(19):1909–11. PubMed .
    1. Galen RS. Application of the predictive value model in the analysis of test effectiveness. Clin Lab Med. 1982;2(4):685–99. PubMed .
    1. Beutler E. G6PD deficiency. Blood. 1994;84(11):3613–36. Epub 1994/12/01. PubMed .
    1. Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371(9606):64–74. Epub 2008/01/08. doi: .
    1. Dern RJ, Beutler E, Alving AS. The hemolytic effect of primaquine. V. Primaquine sensitivity as a manifestation of a multiple drug sensitivity. The Journal of laboratory and clinical medicine. 1955;45(1):30–9. Epub 1955/01/01. PubMed .
    1. Ashley EA, Recht J, White NJ. Primaquine: the risks and the benefits. Malar J. 2014;13:418 doi: ; PubMed Central PMCID: PMCPMC4230503.
    1. Price RN, Simpson JA, Nosten F, Luxemburger C, Hkirjaroen L, ter Kuile F, et al. Factors contributing to anemia after uncomplicated falciparum malaria. The American journal of tropical medicine and hygiene. 2001;65(5):614–22. PubMed ; PubMed Central PMCID: PMC4337986.
    1. Beutler E, Dern RJ, Alving AS. The hemolytic effect of primaquine. IV. The relationship of cell age to hemolysis. The Journal of laboratory and clinical medicine. 1954;44(3):439–42. PubMed .
    1. Zhang P, Gao X, Ishida H, Amnuaysirikul J, Weina PJ, Grogl M, et al. An in vivo drug screening model using glucose-6-phosphate dehydrogenase deficient mice to predict the hemolytic toxicity of 8-aminoquinolines. Am J Trop Med Hyg. 2013;88(6):1138–45. doi: ; PubMed Central PMCID: PMCPMC3752814.
    1. Beutler E, Duparc S, Group GPDW. Glucose-6-phosphate dehydrogenase deficiency and antimalarial drug development. Am J Trop Med Hyg. 2007;77(4):779–89. PubMed .
    1. Domingo GJ, Satyagraha AW, Anvikar A, Baird K, Bancone G, Bansil P, et al. G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests. Malar J. 2013;12:391 doi: ; PubMed Central PMCID: PMC3830439.
    1. Clark TG, Fry AE, Auburn S, Campino S, Diakite M, Green A, et al. Allelic heterogeneity of G6PD deficiency in West Africa and severe malaria susceptibility. European journal of human genetics: EJHG. 2009;17(8):1080–5. doi: ; PubMed Central PMCID: PMC2986558.
    1. Slater HC, Okell LC, Ghani AC. Mathematical modelling to guide drug development for malaria elimination. Trends Parasitol. 2017;33(3):175–84. doi: ; PubMed Central PMCID: PMCPMC5347022.
    1. Johnston GL, Gething PW, Hay SI, Smith DL, Fidock DA. Modeling within-host effects of drugs on Plasmodium falciparum transmission and prospects for malaria elimination. PLoS Comput Biol. 2014;10(1):e1003434 doi: ; PubMed Central PMCID: PMCPMC3900379.

Source: PubMed

3
Tilaa