Hamster neogenin, a host-cell protein contained in a respiratory syncytial virus candidate vaccine, induces antibody responses in rabbits but not in clinical trial participants

Ann-Muriel Steff, Chanel Cadieux-Dion, Gaël de Lannoy, Maria Key Prato, Xavier Czeszak, Bruno André, Dominique C Ingels, Marc Louckx, Walthère Dewé, Marta Picciolato, Koen Maleux, Laurence Fissette, Ilse Dieussaert, Ann-Muriel Steff, Chanel Cadieux-Dion, Gaël de Lannoy, Maria Key Prato, Xavier Czeszak, Bruno André, Dominique C Ingels, Marc Louckx, Walthère Dewé, Marta Picciolato, Koen Maleux, Laurence Fissette, Ilse Dieussaert

Abstract

A recombinant respiratory syncytial virus (RSV) fusion glycoprotein candidate vaccine (RSV-PreF) manufactured in Chinese hamster ovary cells was developed for immunization of pregnant women, to protect newborns against RSV disease through trans-placental antibody transfer. Traces of a host-cell protein, hamster neogenin (haNEO1), were identified in purified RSV-PreF antigen material. Given the high amino-acid sequence homology between haNEO1 and human neogenin (huNEO1), there was a risk that potential vaccine-induced anti-neogenin immunity could affect huNEO1 function in mother or fetus. Anti-huNEO1 IgGs were measured by enzyme-linked immunosorbent assay in sera from rabbits and trial participants (Phase 1 and 2 trials enrolling 128 men and 500 non-pregnant women, respectively; NCT01905215/NCT02360475) collected after immunization with RSV-PreF formulations containing different antigen doses with/without aluminum-hydroxide adjuvant. In rabbits, four injections administered at 14-day intervals induced huNEO1-specific IgG responses in an antigen-dose- and adjuvant-dependent manner, which plateaued in the highest-dose groups after three injections. In humans, no vaccination-induced anti-huNEO1 IgG responses were detected upon a single immunization, as the values in vaccine and control groups fluctuated around pre-vaccination levels up to 90/360 days post-vaccination. A minority of participants had anti-huNEO1 levels ≥ assay cutoff before vaccination, which did not increase post-vaccination. Thus, despite detecting vaccine-induced huNEO1-specific responses in rabbits, we found no evidence that the candidate vaccine had induced anti-huNEO1 immunity in human adults. The antigen purification process was nevertheless optimized, and haNEO1-reduced vaccines were used in a subsequent Phase 2 trial enrolling 400 non-pregnant women (NCT02956837), in which again no vaccine-induced anti-huNEO1 responses were detected.

Keywords: Chinese hamster ovary; Neogenin; RSV-PreF; fusion protein; host cell protein; respiratory syncytial virus; vaccine candidate.

Figures

Figure 1.
Figure 1.
Anti-neogenin antibody concentrations in rabbits.
Figure 2.
Figure 2.
Anti-neogenin antibody concentrations in healthy men.
Figure 3.
Figure 3.
Anti-neogenin antibody concentrations in healthy non-pregnant women.
Figure 4.
Figure 4.
Plain language summary.

References

    1. Hall CB. Respiratory syncytial virus and parainfluenza virus. N Engl J Med. 2001;344:1917–28. doi:10.1056/NEJM200106213442507.
    1. Hall CB, Weinberg GA, Iwane MK, Blumkin AK, Edwards KM, Staat MA, Auinger P, Griffin MR, Poehling KA, Erdman D, et al. The burden of respiratory syncytial virus infection in young children. N Engl J Med. 2009;360:588–98. doi:10.1056/NEJMoa0804877.
    1. Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, O’Brien KL, Roca A, Wright PF, Bruce N, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375:1545–55. doi:10.1016/S0140-6736(10)60206-1.
    1. Deshpande SA, Northern V. The clinical and health economic burden of respiratory syncytial virus disease among children under 2 years of age in a defined geographical area. Arch Dis Child. 2003;88:1065–69. doi:10.1136/adc.88.12.1065.
    1. Shi T, McAllister DA, O’Brien KL, Simoes EAF, Madhi SA, Gessner BD, Polack FP, Balsells E, Acacio S, Aguayo C, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet. 2017;390:946–58. doi:10.1016/S0140-6736(17)30938-8.
    1. Capella C, Chaiwatpongsakorn S, Gorrell E, Risch ZA, Ye F, Mertz SE, Johnson SM, Moore-Clingenpeel M, Ramilo O, Mejias A, et al. Prefusion F, postfusion F, G antibodies and disease severity in infants and young children with acute respiratory syncytial virus infection. J Infect Dis. 2017;216:1398–406. doi:10.1093/infdis/jix489.
    1. Englund J, Glezen WP, Piedra PA. Maternal immunization against viral disease. Vaccine. 1998;16:1456–63. doi:10.1016/S0264-410X(98)00108-X.
    1. Munoz FM. Respiratory syncytial virus in infants: is maternal vaccination a realistic strategy? Curr Opin Infect Dis. 2015;28:221–24. doi:10.1097/QCO.0000000000000161.
    1. Ochola R, Sande C, Fegan G, Scott PD, Medley GF, Cane PA, Nokes DJ. The level and duration of RSV-specific maternal IgG in infants in Kilifi Kenya. PLoS One. 2009;4:e8088. doi:10.1371/journal.pone.0008088.
    1. Vojtek I, Dieussaert I, Doherty TM, Franck V, Hanssens L, Miller J, Bekkat-Berkani R, Kandeil W, Prado-Cohrs D, Vyse A. Maternal immunization: where are we now and how to move forward? Ann Med. 2018;50:193–208. doi:10.1080/07853890.2017.1421320.
    1. Graham BS, Modjarrad K, McLellan JS. Novel antigens for RSV vaccines. Curr Opin Immunol. 2015;35:30–38. doi:10.1016/j.coi.2015.04.005.
    1. Mazur NI, Higgins D, Nunes MC, Melero JA, Langedijk AC, Horsley N, Buchholz UJ, Openshaw PJ, McLellan JS, Englund JA, et al. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. Lancet Infect Dis. 2018;18:e295–e311. doi:10.1016/S1473-3099(18)30292-5.
    1. Blais N, Gagné M, Hamuro Y, Rheault P, Boyer M, Steff AM, Baudoux G, Dewar V, Demers J, Ruelle JL, et al. Characterization of Pre-F-GCN4t, a modified human respiratory syncytial virus fusion protein stabilized in a noncleaved prefusion conformation. J Virol. 2017;91(13). doi:10.1128/JVI.02437-16.
    1. Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004;22:1393–98. doi:10.1038/nbt1026.
    1. Bracewell DG, Francis R, Smales CM. The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control. Biotechnol Bioeng. 2015;112:1727–37. doi:10.1002/bit.25628.
    1. Guiochon G, Beaver LA. Separation science is the key to successful biopharmaceuticals. J Chromatogr A. 2011;1218:8836–58. doi:10.1016/j.chroma.2011.09.008.
    1. Wang X, Hunter AK, Mozier NM. Host cell proteins in biologics development: identification, quantitation and risk assessment. Biotechnol Bioeng. 2009;103:446–58. doi:10.1002/bit.v103:3.
    1. Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012;30:1158–70. doi:10.1016/j.biotechadv.2011.08.022.
    1. de Zafra CL, Quarmby V, Francissen K, Vanderlaan M, Zhu-Shimoni J. Host cell proteins in biotechnology-derived products: A risk assessment framework. Biotechnol Bioeng. 2015;112:2284–91. doi:10.1002/bit.25647.
    1. Lai Wing Sun K, JP C, Kennedy TE. Netrins: versatile extracellular cues with diverse functions. Development. 2011;138:2153–69. doi:10.1242/dev.044529.
    1. Rajagopalan S, Deitinghoff L, Davis D, Conrad S, Skutella T, Chedotal A, Mueller BK, Strittmatter SM. Neogenin mediates the action of repulsive guidance molecule. Nat Cell Biol. 2004;6:756–62. doi:10.1038/ncb1156.
    1. Siebold C, Yamashita T, Monnier PP, Mueller BK, Pasterkamp RJ. RGMs: structural insights, molecular regulation, and downstream signaling. Trends Cell Biol. 2017;27:365–78. doi:10.1016/j.tcb.2016.11.009.
    1. De Vries M, Cooper HM. Emerging roles for neogenin and its ligands in CNS development. J Neurochem. 2008;106:1483–92. doi:10.1111/jnc.2008.106.issue-4.
    1. Wilson NH, Key B. Neogenin: one receptor, many functions. Int J Biochem Cell Biol. 2007;39:874–78. doi:10.1016/j.biocel.2006.10.023.
    1. Schlegel M, Körner A, Kaussen T, Knausberg U, Gerber C, Hansmann G, Jónasdóttir HS, Giera M, Mirakaj V. Inhibition of neogenin fosters resolution of inflammation and tissue regeneration. J Clin Invest. 2018;128:4711–26. doi:10.1172/JCI96259.
    1. Gutiérrez AH, Moise L, De Groot AS. Of [hamsters] and men: a new perspective on host cell proteins. Hum Vaccin Immunother. 2012;8:1172–74. doi:10.4161/hv.22378.
    1. Langley JM, Aggarwal N, Toma A, Halperin SA, McNeil SA, Fissette L, Dewé W, Leyssen M, Toussaint JF, Dieussaert I. A randomized, controlled, observer-blinded phase 1 study of the safety and immunogenicity of a respiratory syncytial virus vaccine with or without alum adjuvant. J Infect Dis. 2017;215:24–33. doi:10.1093/infdis/jiw453.
    1. Beran J, Lickliter JD, Schwarz TF, Johnson C, Chu L, Domachowske JB, Van Damme P, Withanage K, Fissette LA, David MP, et al. Safety and immunogenicity of 3 formulations of an investigational respiratory syncytial virus vaccine in nonpregnant women: results from 2 phase 2 trials. J Infect Dis. 2018;217:1616–25. doi:10.1093/infdis/jiy065.
    1. Schwarz TF, McPhee RA, Launay O, Leroux-Roels G, Talli J, Picciolato M, Gao F, Cai R, Nguyen TL-A, Dieussaert I, et al. Immunogenicity and safety of 3 formulations of a respiratory syncytial virus candidate vaccine in non-pregnant women: a phase II, randomized trial. J Infect Dis. 2019;220:1816–25. doi:10.1093/infdis/jiz395.
    1. Shankar G, Devanarayan V, Amaravadi L, Barrett YC, Bowsher R, Finco-Kent D, Fiscella M, Gorovits B, Kirschner S, Moxness M, et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J Pharm Biomed Anal. 2008;48:1267–81. doi:10.1016/j.jpba.2008.09.020.
    1. Brinks V, Jiskoot W, Schellekens H. Immunogenicity of therapeutic proteins: the use of animal models. Pharm Res. 2011;28:2379–85. doi:10.1007/s11095-011-0523-5.
    1. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731–38. doi:10.4049/jimmunol.172.5.2731.
    1. Haynes LM. Progress and challenges in RSV prophylaxis and vaccine development. J Infect Dis. 2013;208(Suppl 3):S177–183. doi:10.1093/infdis/jit512.
    1. Allen TM, Brehm MA, Bridges S, Ferguson S, Kumar P, Mirochnitchenko O, Palucka K, Pelanda R, Sanders-Beer B, Shultz LD, et al. Humanized immune system mouse models: progress, challenges and opportunities. Nat Immunol. 2019;20:770–74. doi:10.1038/s41590-019-0416-z.
    1. Valentini D, Rao M, Rane L, Rahman S, Axelsson-Robertson R, Heuchel R, Löhr M, Hoft D, Brighenti S, Zumla A, et al. Peptide microarray-based characterization of antibody responses to host proteins after bacille Calmette-Guérin vaccination. Int J Infect Dis. 2017;56:140–54. doi:10.1016/j.ijid.2017.01.027.
    1. ICH . Harmonised tripartite guideline; impurities in new drug substances Q3A(R2). October 2006.
    1. EMA . CPMP position statement on DNA and host cell proteins (HCP) impurities, routine testing versus validation studies (CPMP/BWP/382/97). June 1997.
    1. Wilcox CR, Holder B, Jones CE. Factors affecting the FcRn-mediated transplacental transfer of antibodies and implications for vaccination in pregnancy. Front Immunol. 2017;8:1294. doi:10.3389/fimmu.2017.01294.

Source: PubMed

3
Tilaa