The Differentiation of Amnestic Type MCI from the Non-Amnestic Types by Structural MRI

Gábor Csukly, Enikő Sirály, Zsuzsanna Fodor, András Horváth, Pál Salacz, Zoltán Hidasi, Éva Csibri, Gábor Rudas, Ádám Szabó, Gábor Csukly, Enikő Sirály, Zsuzsanna Fodor, András Horváth, Pál Salacz, Zoltán Hidasi, Éva Csibri, Gábor Rudas, Ádám Szabó

Abstract

Introduction: While amnestic mild cognitive impairment (aMCI) and non-amnestic mild cognitive impairment (naMCI) are theoretically different entities, only a few investigations studied the structural brain differences between these subtypes of mild cognitive impairment. The aim of the study was to find the structural differences between aMCI and naMCI, and to replicate previous findings on the differentiation between aMCI and healthy controls.

Methods: Altogether 62 aMCI, naMCI, and healthy control subjects were included into the study based on the Petersen criteria. All patients underwent a routine brain MR examination, and a detailed neuropsychological examination.

Results: The sizes of the hippocampus, the entorhinal cortex and the amygdala were decreased in aMCI relative to naMCI and to controls. Furthermore the cortical thickness of the entorhinal cortex, the fusiform gyrus, the precuneus and the isthmus of the cingulate gyrus were significantly decreased in aMCI relative to naMCI and healthy controls. The largest differences relative to controls were detected for the volume of the hippocampus (18% decrease vs. controls) and the cortical thickness (20% decrease vs. controls) of the entorhinal cortex: 1.6 and 1.4 in terms of Cohen's d. Only the volume of the precuneus were decreased in the naMCI group (5% decrease) compared to the control subjects: 0.9 in terms of Cohen's d. Significant between group differences were also found in the neuropsychological test results: a decreased anterograde, retrograde memory, and category fluency performance was detected in the aMCI group relative to controls and naMCI subjects. Subjects with naMCI showed decreased letter fluency relative to controls, while both MCI groups showed decreased executive functioning relative to controls as measured by the Trail Making test part B. Memory performance in the aMCI group and in the entire sample correlated with the thickness of the entorhinal cortex and with the volume of the amygdala.

Conclusion: The amnestic mild cognitive impairment/non-amnestic mild cognitive impairment separation is not only theoretical but backed by structural imaging methods and neuropsychological tests. A better knowledge of the MCI subtypes can help to predict the direction of progression and create targeted prevention.

Keywords: MRI; amnestic; mild cognitive impairment; neuropsychological test; non-amnestic.

Figures

Figure 1
Figure 1
Between group differences in CNS structures and neuropsychological tests. Vertical bars represent group means, while error bars represent standard deviations. The horizontal lines over the vertical bars indicate significant between group differences after correction for multiple comparisons (p < 0.016). HC, healthy controls; aMCI, amnestic mild cognitive impairment; naMCI, non-amnestic mild cognitive impairment; CNS, central nervous system.
Figure 2
Figure 2
Correlation between short term memory performance as indexed by the Rey verbal learning test and the amygdala volume and the entorhinal cortex thickness in the study groups. Pearson correlations were significant (p < 0.05) in the amnestic MCI group and in the entire sample, while non-significant in the control and in the non-amnestic MCI groups. Rey verbal test total score on the vertical axes equals the sum of words in the first five trials. red line, regression line in the aMCI group; dashed line, regression line in the entire sample; MCI, mild cognitive impairment; r and p, Pearson correlation coefficient adjusted for age and corresponding level of significance in the aMCI group.

References

    1. Albert M. S., DeKosky S. T., Dickson D., Dubois B., Feldman H. H., Fox N. C., et al. . (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 270–279. 10.1016/j.jalz.2011.03.008
    1. Alexopoulos P., Ebert A., Richter-Schmidinger T., Scholl E., Natale B., Aguilar C. A., Gourzis P., et al. . (2010). Validation of the German revised Addenbrooke's cognitive examination for detecting mild cognitive impairment, mild dementia in alzheimer's disease and frontotemporal lobar degeneration. Dement. Geriatr. Cogn. Disord. 29, 448–456. 10.1159/000312685
    1. Birn R. M., Kenworthy L., Case L., Caravella R., Jones T. B., Bandettini P. A., et al. . (2010). Neural systems supporting lexical search guided by letter and semantic category cues: a self-paced overt response fMRI study of verbal fluency. Neuroimage. 49, 1099–1107. 10.1016/j.neuroimage.2009.07.036
    1. Bischkopf J., Busse A., Angermeyer M. C. (2002). Mild cognitive impairment–a review of prevalence, incidence and outcome according to current approaches. Acta Psychiatr. Scand. 106, 403–414. 10.1034/j.1600-0447.2002.01417.x
    1. Braak H., Braak E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259. 10.1007/BF00308809
    1. Chiang G. C., Insel P. S., Tosun D., Schuff N., Truran-Sacrey D., Raptentsetsang S., et al. . (2011). Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes. Radiology 259, 844–851. 10.1148/radiol.11101637
    1. Dale A. M., Fischl B., Sereno M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194.
    1. Desikan R. S., Cabral H. J., Hess C. P., Dillon W. P., Glastonbury C. M., Weiner M. W., et al. . (2009). Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease. Brain 132, 2048–2057. 10.1093/brain/awp123
    1. deToledo-Morrell L., Stoub T. R., Bulgakova M., Wilson R. S., Bennett D. A., Leurgans S., et al. . (2004). MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol. Aging 25, 1197–1203. 10.1016/j.neurobiolaging.2003.12.007
    1. Fischl B., Dale A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97, 11050–11055. 10.1073/pnas.200033797
    1. Fischl B., Salat D. H., van der Kouwe A. J., Makris N., Segonne F., Quinn B. T., et al. . (2004). Sequence-independent segmentation of magnetic resonance images. Neuroimage 23(Suppl. 1), S69–S84. 10.1016/j.neuroimage.2004.07.016
    1. Fischl B., Sereno M. I., Dale A. M. (1999a). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207.
    1. Fischl B., Sereno M. I., Tootell R. B., Dale A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284. 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>;2-4
    1. Ganguli M., Dodge H. H., Shen C., DeKosky S. T. (2004). Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology 63, 115–121. 10.1212/01.WNL.0000132523.27540.81
    1. Gomar J. J., Bobes-Bascaran M. T., Conejero-Goldberg C., Davies P., Goldberg T. E. (2011). Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer's disease neuroimaging initiative. Arch. Gen. Psychiatry 68, 961–969. 10.1001/archgenpsychiatry.2011.96
    1. Grundman M. (2004). MIld cognitive impairment can be distinguished from alzheimer disease and normal aging for clinical trials. Arch. Neurol. 61, 59–66. 10.1001/archneur.61.1.59
    1. Han J. W., Kim T. H., Lee S. B., Park J. H., Lee J. J., Huh Y., et al. . (2012). Predictive validity and diagnostic stability of mild cognitive impairment subtypes. Alzheimers Dement. 8, 553–559. 10.1016/j.jalz.2011.08.007
    1. Hansson O., Zetterberg H., Buchhave P., Londos E., Blennow K., Minthon L. (2006). Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 5, 228–234. 10.1016/S1474-4422(06)70355-6
    1. Henry J. D., Crawford J. R., Phillips L. H. (2004). Verbal fluency performance in dementia of the Alzheimer's type: a meta-analysis. Neuropsychologia 42, 1212–1222. 10.1016/j.neuropsychologia.2004.02.001
    1. Jack C. R., Jr., Petersen R. C., Xu Y. C., O'Brien P. C., Smith G. E., Ivnik R. J., et al. . (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52, 1397–1403.
    1. Killiany R. J., Gomez-Isla T., Moss M., Kikinis R., Sandor T., Jolesz F., et al. . (2000). Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann. Neurol. 47, 430–439.
    1. Larrieu S., Letenneur L., Orgogozo J. M., Fabrigoule C., Amieva H., Le C. N., et al. . (2002). Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 59, 1594–1599. 10.1212/01.WNL.0000034176.07159.F8
    1. Lezak M. D., Howieson D. B., Loring D. W., Hannay H. J., Fischer J. S. (2004). Neuropsychological Assessment, 4th Edn. New York, NY: Oxford University Press.
    1. Mathuranath P. S., Nestor P. J., Berrios G. E., Rakowicz W., Hodges J. R. (2000). A brief cognitive test battery to differentiate Alzheimer's disease and frontotemporal dementia. Neurology 55, 1613–1620. 10.1212/01.wnl.0000434309.85312.19
    1. Mattsson N., Zetterberg H., Hansson O., Andreasen N., Parnetti L., Jonsson M., et al. . (2009). CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 302, 385–393. 10.1001/jama.2009.1064
    1. McEvoy L. K., Fennema-Notestine C., Roddey J. C., Hagler D. J., Jr., Holland D., et al. . (2009). Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 251, 195–205. 10.1148/radiol.2511080924
    1. Mosconi L., Perani D., Sorbi S., Herholz K., Nacmias B., Holthoff V., et al. . (2004). MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 63, 2332–2340. 10.1212/01.WNL.0000147469.18313.3B
    1. O'Dwyer L., Lamberton F., Bokde A. L., Ewers M., Faluyi Y. O., Tanner C., et al. . (2011). Multiple indices of diffusion identifies white matter damage in mild cognitive impairment and Alzheimer's disease. PLoS ONE 6:e21745. 10.1371/journal.pone.0021745
    1. Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256, 183–194. 10.1111/j.1365-2796.2004.01388.x
    1. Petersen R. C., Negash S. (2008). Mild cognitive impairment: an overview. CNS Spectr. 13, 45–53.
    1. Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Tangalos E. G., Kokmen E. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308.
    1. Petersen R. C., Stevens J. C., Ganguli M., Tangalos E. G., Cummings J. L., DeKosky S. T. (2001). Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality standards subcommittee of the American academy of neurology. Neurology 56, 1133–1142. 10.1212/WNL.56.9.1133
    1. REITAN R. M. (1955). The relation of the trail making test to organic brain damage. J. Consult. Psychol. 19, 393–394.
    1. Reuter M., Rosas H. D., Fischl B. (2010). Highly accurate inverse consistent registration: a robust approach. Neuroimage 53, 1181–1196. 10.1016/j.neuroimage.2010.07.020
    1. Rey A. (1958). L'examen Clinique en Psychologie Paris: Presses universitaires de France.
    1. Segonne F., Dale A. M., Busa E., Glessner M., Salat D., Hahn H. K., et al. . (2004). A hybrid approach to the skull stripping problem in MRI. Neuroimage 22, 1060–1075. 10.1016/j.neuroimage.2004.03.032
    1. Serra L., Giulietti G., Cercignani M., Spano B., Torso M., Castelli D., et al. . (2013). Mild cognitive impairment: same identity for different entities. J. Alzheimers Dis. 33, 1157–1165. 10.3233/JAD-2012-121663
    1. Sirály E., Szabó Á., Szita B., Kovács V., Fodor Z., Marosi C., et al. . (2015). Monitoring the early signs of cognitive decline in elderly by computer games: an MRI study. PLoS ONE 10:e0117918. 10.1371/journal.pone.0117918
    1. Siraly E., Szita B., Kovacs V., Csibri E., Hidasi Z., Salacz P., et al. . (2013). [Differentiation between mild cognitive impairment and healthy elderly population using neuropsychological tests]. Neuropsychopharmacol. Hung. 15, 139–146.
    1. Spielberger C., Gorsuch R., Lushene R. (1970). Manual for the State-Trait Anxiety Inventory Palo Alto, TX: Consulting Psychologist Press.
    1. Strauss E., Sherman E. M. S., Spreen O. (2006a). A Compendium of Neuropsychological Tests, 3rd Edn. New York, NY: Oxford University Press.
    1. Strauss E., Sherman E. M. S., Spreen O. (eds.). (2006b). Mini Mental State Examination (MMSE), in Compendium of Neuropsychological Tests, 3rd Edn. (New York, NY: Oxford University Press; ), 168–188.
    1. Tombaugh T. N. (2004). Trail Making Test A and B: normative data stratified by age and education. Arch. Clin. Neuropsychol. 19, 203–214. 10.1016/S0887-6177(03)00039-8
    1. Vincent J. L., Snyder A. Z., Fox M. D., Shannon B. J., Andrews J. R., Raichle M. E., et al. . (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531. 10.1152/jn.00048.2006
    1. Yesavage J. A. (1988). Geriatric depression scale. Psychopharmacol. Bull. 24, 709–711.
    1. Zhang H., Trollor J. N., Wen W., Zhu W., Crawford J. D., Kochan N. A., et al. . (2011). Grey matter atrophy of basal forebrain and hippocampus in mild cognitive impairment. J. Neurol. Neurosurg. Psychiatry 82, 487–493. 10.1136/jnnp.2010.217133

Source: PubMed

3
Tilaa