Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China

Robert L Kruse, Robert L Kruse

Abstract

A novel coronavirus (2019-nCoV) originating in Wuhan, China presents a potential respiratory viral pandemic to the world population. Current efforts are focused on containment and quarantine of infected individuals. Ultimately, the outbreak could be controlled with a protective vaccine to prevent 2019-nCoV infection. While vaccine research should be pursued intensely, there exists today no therapy to treat 2019-nCoV upon infection, despite an urgent need to find options to help these patients and preclude potential death. Herein, I review the potential options to treat 2019-nCoV in patients, with an emphasis on the necessity for speed and timeliness in developing new and effective therapies in this outbreak. I consider the options of drug repurposing, developing neutralizing monoclonal antibody therapy, and an oligonucleotide strategy targeting the viral RNA genome, emphasizing the promise and pitfalls of these approaches. Finally, I advocate for the fastest strategy to develop a treatment now, which could be resistant to any mutations the virus may have in the future. The proposal is a biologic that blocks 2019-nCoV entry using a soluble version of the viral receptor, angiotensin-converting enzyme 2 (ACE2), fused to an immunoglobulin Fc domain, providing a neutralizing antibody with maximal breath to avoid any viral escape, while also helping to recruit the immune system to build lasting immunity. The sequence of the ACE2-Fc protein is provided to investigators, allowing its possible use in recombinant protein expression systems to start producing drug today to treat patients under compassionate use, while formal clinical trials are later undertaken. Such a treatment could help infected patients before a protective vaccine is developed and widely available in the coming months to year(s).

Keywords: 2019-nCoV; ACE2; Wuhan; coronavirus; neutralizing antibody; outbreak.

Conflict of interest statement

No competing interests were disclosed.

Copyright: © 2020 Kruse RL.

Figures

Figure 1.. Therapeutic agents that could be…
Figure 1.. Therapeutic agents that could be used to block 2019-nCoV from infecting cells.
Target cells expressing ACE2 include lung and gastrointestinal tissues in the human body. The large spike protein on the surface of the coronavirus binds to ACE2 on infected cells, leading to cell entry. Three proposed strategies would block this interaction would abrogate infection. In the first, the receptor-binding domain (RBD) of the spike protein from SARS or 2019-nCoV would be administered, thereby binding ACE2 and saturating available sites. Alternatively, an antibody or single chain antibody fragment (scFv) could be administered against ACE2 to accomplish the same. A third strategy would target the coronavirus virions directly by using the ACE2 extracellular domain as bait to bind to spike protein. An Fc domain fused to ACE2 would facilitate prolonged circulation of the biologic (ACE2-Fc).
Figure 2.. TherapeuticDesign of the ACE2-Fc fusion…
Figure 2.. TherapeuticDesign of the ACE2-Fc fusion protein as a therapy against 2019-nCoV coronavirus.
(A) The extracellular domain of ACE2 is appended onto the human immunoglobulin Fc domain, including the hinge region. The Fc domain facilitates dimerization of two ACE2 domains. (B) The amino acid sequence of the ACE2-Fc fusion protein is provided. The ACE2 domain consists of amino acids 18–615 of the human ACE2 protein (blue; UniProtKB - Q9BYF1). The sequence of the human immunoglobulin G isotype 1 constant region is provided (green; UniProtKB - P01857). A secretion signal from a human immunoglobin heavy chain is provided (red; UniProtKB - A0A0C4DH39).

References

    1. Zhu N, Zhang D, Wang W, et al. : A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; NEJMoa2001017. 10.1056/NEJMoa2001017
    1. Ksiazek TG, Erdman D, Goldsmith CS, et al. : A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953–1966. 10.1056/NEJMoa030781
    1. Zaki AM, van Boheemen S, Bestebroer TM, et al. : Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–1820. 10.1056/NEJMoa1211721
    1. Stadler K, Masignani V, Eickmann M, et al. : SARS--beginning to understand a new virus. Nat Rev Microbiol. 2003;1(3):209–218. 10.1038/nrmicro775
    1. Chan JF, Yuan S, Kok KH, et al. : A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020; pii: S0140-6736(20)30154-9. 10.1016/S0140-6736(20)30154-9
    1. Huang C, Wang Y, Li X, et al. : Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; pii: S0140-6736(20)30183-5. 10.1016/S0140-6736(20)30183-5
    1. Cheng VCC, Wong SC, To KKW, et al. : Preparedness and proactive infection control measures against the emerging Wuhan coronavirus pneumonia in China. J Hosp Infect. 2020; pii: S0195-6701(20)30034-7. 10.1016/j.jhin.2020.01.010
    1. Svoboda T, Henry B, Shulman L, et al. : Public health measures to control the spread of the severe acute respiratory syndrome during the outbreak in Toronto. N Engl J Med. 2004;350(23):2352–2361. 10.1056/NEJMoa032111
    1. Fischer WA, 2nd, Weber D, Wohl DA: Personal Protective Equipment: Protecting Health Care Providers in an Ebola Outbreak. Clin Ther. 2015;37(11):2402–2410. 10.1016/j.clinthera.2015.07.007
    1. Avendano M, Derkach P, Swan S: Clinical course and management of SARS in health care workers in Toronto: a case series. CMAJ. 2003;168(13):1649–1660.
    1. Uyeki TM, Mehta AK, Davey RT, Jr, et al. : Clinical Management of Ebola Virus Disease in the United States and Europe. N Engl J Med. 2016;374(7):636–646. 10.1056/NEJMoa1504874
    1. Henao-Restrepo AM, Camacho A, Longini IM, et al. : Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. 2017;389(10068):505–518. 10.1016/S0140-6736(16)32621-6
    1. Geisbert TW, Daddario-Dicaprio KM, Lewis MG, et al. : Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates. PLoS Pathog. 2008;4(11):e1000225. 10.1371/journal.ppat.1000225
    1. Tortorici MA, Veesler D: Structural insights into coronavirus entry. Adv Virus Res. 2019;105:93–116. 10.1016/bs.aivir.2019.08.002
    1. Casadevall A, Pirofski LA: The Ebola epidemic crystallizes the potential of passive antibody therapy for infectious diseases. PLoS Pathog. 2015;11(4):e1004717. 10.1371/journal.ppat.1004717
    1. Shin YW, Chang KH, Hong GW, et al. : Selection of Vaccinia Virus-Neutralizing Antibody from a Phage-Display Human-Antibody Library. J Microbiol Biotechnol. 2019;29(4):651–657. 10.4014/jmb.1812.12024
    1. Keck ZY, Wang Y, Lau P, et al. : Isolation of HCV Neutralizing Antibodies by Yeast Display. Methods Mol Biol. 2019;1911:395–419. 10.1007/978-1-4939-8976-8_27
    1. Elshabrawy HA, Coughlin MM, Baker SC, et al. : Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. PLoS One. 2012;7(11):e50366. 10.1371/journal.pone.0050366
    1. Tripathi NK, Shrivastava A: Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol. 2019;7:420. 10.3389/fbioe.2019.00420
    1. Schmidt R, Beltzig LC, Sawatsky B, et al. : Generation of therapeutic antisera for emerging viral infections. NPJ Vaccines. 2018;3:42–10. 10.1038/s41541-018-0082-4
    1. Jahrling PB, Geisbert J, Swearengen JR, et al. : Passive immunization of Ebola virus-infected cynomolgus monkeys with immunoglobulin from hyperimmune horses. Arch Virol Suppl. 1996;11:135–140. 10.1007/978-3-7091-7482-1_12
    1. Goto M, Kuribayashi K, Umemori Y, et al. : High prevalence of human anti-mouse antibodies in the serum of colorectal cancer patients. Anticancer Res. 2010;30(10):4353–4356.
    1. Qureshi A, Tantray VG, Kirmani AR, et al. : A review on current status of antiviral siRNA. Rev Med Virol. 2018;28(4):e1976. 10.1002/rmv.1976
    1. Youngren-Ortiz SR, Gandhi NS, España-Serrano L, et al. : Aerosol Delivery of siRNA to the Lungs. Part 1: Rationale for Gene Delivery Systems. Kona. 2016;33:63–85. 10.14356/kona.2016014
    1. Dunning J, Sahr F, Rojek A, et al. : Experimental Treatment of Ebola Virus Disease with TKM-130803: A Single-Arm Phase 2 Clinical Trial. PLoS Med. 2016;13(4):e1001997. 10.1371/journal.pmed.1001997
    1. Thi EP, Mire CE, Lee AC, et al. : Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature. 2015;521(7552):362–365. 10.1038/nature14442
    1. Thi EP, Lee AC, Geisbert JB, et al. : Rescue of non-human primates from advanced Sudan ebolavirus infection with lipid encapsulated siRNA. Nat Microbiol. 2016;1(10): 16142. 10.1038/nmicrobiol.2016.142
    1. Tsai CH, Lee PY, Stollar V, et al. : Antiviral therapy targeting viral polymerase. Curr Pharm Des. 2006;12(11):1339–1355. 10.2174/138161206776361156
    1. Anderson J, Schiffer C, Lee SK, et al. : Viral protease inhibitors. Handb Exp Pharmacol. 2009;189:85–110. 10.1007/978-3-540-79086-0_4
    1. Litterman N, Lipinski C, Ekins S: Small molecules with antiviral activity against the Ebola virus [version 1; peer review: 2 approved]. F1000Res. 2015;4:38. 10.12688/f1000research.6120.1
    1. Dodd LE, Follmann D, Proschan M, et al. : A meta-analysis of clinical studies conducted during the West Africa Ebola virus disease outbreak confirms the need for randomized control groups. Sci Transl Med. 2019;11(520): pii: eaaw1049. 10.1126/scitranslmed.aaw1049
    1. Chu CM, Cheng VC, Hung IF, et al. : Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252–256. 10.1136/thorax.2003.012658
    1. Sheahan TP, Sims AC, Leist SR, et al. : Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1): 222. 10.1038/s41467-019-13940-6
    1. Li CC, Wang XJ, Wang HR: Repurposing host-based therapeutics to control coronavirus and influenza virus. Drug Discov Today. 2019;24(3):726–736. 10.1016/j.drudis.2019.01.018
    1. Dyall J, Coleman CM, Hart BJ, et al. : Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58(8):4885–4893. 10.1128/AAC.03036-14
    1. Mire CE, Geisbert JB, Agans KN, et al. : Passive Immunotherapy: Assessment of Convalescent Serum Against Ebola Virus Makona Infection in Nonhuman Primates. J Infect Dis. 2016;214(suppl 3):S367–S374. 10.1093/infdis/jiw333
    1. Marano G, Vaglio S, Pupella S, et al. : Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus. 2016;14(2):152–157. 10.2450/2015.0131-15
    1. Kraft CS, Hewlett AL, Koepsell S, et al. : The Use of TKM-100802 and Convalescent Plasma in 2 Patients With Ebola Virus Disease in the United States. Clin Infect Dis. 2015;61(4):496–502. 10.1093/cid/civ334
    1. Walker LM, Burton DR: Passive immunotherapy of viral infections: ‘super-antibodies’ enter the fray. Nat Rev Immunol. 2018;18(5):297–308. 10.1038/nri.2017.148
    1. PREVAIL II Writing Group, Multi-National PREVAIL II Study Team, . Davey RT, Jr, et al. : A Randomized, Controlled Trial of ZMapp for Ebola Virus Infection. N Engl J Med. 2016;375(15):1448–1456. 10.1056/NEJMoa1604330
    1. Zhou P, Yang XL, Wang XG, et al. : Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv. 2020; 2020.01.22.914952. 10.1101/2020.01.22.914952
    1. Li W, Moore MJ, Vasilieva N, et al. : Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965): 450–454. 10.1038/nature02145
    1. Karakus U, Pohl MO, Stertz S: Breaking the convention: Sialoglycan variants, Co-receptors and Alternative Receptors for Influenza A Virus Entry. J Virol. 2019; pii: JVI.01357-19. 10.1128/JVI.01357-19
    1. Wong SK, Li W, Moore MJ, et al. : A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2004;279(5): 3197–3201. 10.1074/jbc.C300520200
    1. Arbabi-Ghahroudi M: Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook. Front Immunol. 2017;8:1589. 10.3389/fimmu.2017.01589
    1. Xia C, Gautam A: Biopharma CRO industry in China: landscape and opportunities. Drug Discov Today. 2015;20(7): 794–798. 10.1016/j.drudis.2015.02.007
    1. Du L, Kou Z, Ma C, et al. : A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines. PLoS One. 2013;8(12):e81587. 10.1371/journal.pone.0081587
    1. Wang X, Mathieu M, Brezski RJ: IgG Fc engineering to modulate antibody effector functions. Protein Cell. 2018;9(1): 63–73. 10.1007/s13238-017-0473-8
    1. Sondermann P, Szymkowski DE: Harnessing Fc receptor biology in the design of therapeutic antibodies. Curr Opin Immunol. 2016;40: 78–87. 10.1016/j.coi.2016.03.005
    1. Desmyter A, Farenc C, Mahony J, et al. : Viral infection modulation and neutralization by camelid nanobodies. Proc Natl Acad Sci U S A. 2013;110(15): E1371–9. 10.1073/pnas.1301336110
    1. Koch K, Kalusche S, Torres JL, et al. : Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers. Sci Rep. 2017;7(1):8390–15. 10.1038/s41598-017-08273-7
    1. He Y, Zhou Y, Liu S, et al. : Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun. 2004;324(2):773–781. 10.1016/j.bbrc.2004.09.106
    1. Gu J, Korteweg C: Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136–1147. 10.2353/ajpath.2007.061088
    1. Kuba K, Imai Y, Rao S, et al. : A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–879. 10.1038/nm1267
    1. Sui J, Li W, Murakami A, et al. : Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A. 2004;101(8):2536–2541. 10.1073/pnas.0307140101
    1. Moore MJ, Dorfman T, Li W, et al. : Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2. J Virol. 2004;78(19):10628–10635. 10.1128/JVI.78.19.10628-10635.2004
    1. Imai Y, Kuba K, Rao S, et al. : Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116. 10.1038/nature03712
    1. Gu H, Xie Z, Li T, et al. : Angiotensin-converting enzyme 2 inhibits lung injury induced by respiratory syncytial virus. Sci Rep. 2016;6:19840. 10.1038/srep19840
    1. Zou Z, Yan Y, Shu Y, et al. : Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun. 2014;5:3594. 10.1038/ncomms4594
    1. Haschke M, Schuster M, Poglitsch M, et al. : Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52(9):783–792. 10.1007/s40262-013-0072-7
    1. Khan A, Benthin C, Zeno B, et al. : A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234. 10.1186/s13054-017-1823-x
    1. Li F, Li W, Farzan M, et al. : Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309(5742):1864–1868. 10.1126/science.1116480
    1. Liu P, Wysocki J, Souma T, et al. : Novel ACE2-Fc chimeric fusion provides long-lasting hypertension control and organ protection in mouse models of systemic renin angiotensin system activation. Kidney Int. 2018;94(1):114–125. 10.1016/j.kint.2018.01.029
    1. Yasui F, Kohara M, Kitabatake M, et al. : Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus. Virology. 2014;454–455:157–168. 10.1016/j.virol.2014.02.005
    1. Glowacka I, Bertram S, Herzog P, et al. : Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol. 2010;84(2):1198–1205. 10.1128/JVI.01248-09
    1. Li W, Zhang C, Sui J, et al. : Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24(8):1634–1643. 10.1038/sj.emboj.7600640
    1. Chamow SM, Duliege AM, Ammann A, et al. : CD4 immunoadhesins in anti-HIV therapy: new developments. Int J Cancer Suppl. 1992;7:69–72.
    1. Shearer WT, Israel RJ, Starr S, et al. : Recombinant CD4-IgG2 in human immunodeficiency virus type 1-infected children: phase 1/2 study. The Pediatric AIDS Clinical Trials Group Protocol 351 Study Team. J Infect Dis. 2000;182(6):1774–1779. 10.1086/317622
    1. Jacobson JM, Lowy I, Fletcher CV, et al. : Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J Infect Dis. 2000;182(1):326–329. 10.1086/315698
    1. Gardner MR, Kattenhorn LM, Kondur HR, et al. : AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature. 2015;519(7541):87–91. 10.1038/nature14264
    1. Gardner MR, Fellinger CH, Kattenhorn LM, et al. : AAV-delivered eCD4-Ig protects rhesus macaques from high-dose SIVmac239 challenges. Sci Transl Med. 2019;11(502): pii: eaau5409. 10.1126/scitranslmed.aau5409
    1. Shao Z, Shrestha K, Borowski AG, et al. : Increasing serum soluble angiotensin-converting enzyme 2 activity after intensive medical therapy is associated with better prognosis in acute decompensated heart failure. J Card Fail. 2013;19(9):605–610. 10.1016/j.cardfail.2013.06.296
    1. Wan Y, Shang J, Sun S, et al. : Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol. 2019; pii: JVI.02015-19. 10.1128/JVI.02015-19
    1. Raj VS, Mou H, Smits SL, et al. : Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251–254. 10.1038/nature12005

Source: PubMed

3
Tilaa