Issues in applying multi-arm multi-stage methodology to a clinical trial in prostate cancer: the MRC STAMPEDE trial

Matthew R Sydes, Mahesh K B Parmar, Nicholas D James, Noel W Clarke, David P Dearnaley, Malcolm D Mason, Rachel C Morgan, Karen Sanders, Patrick Royston, Matthew R Sydes, Mahesh K B Parmar, Nicholas D James, Noel W Clarke, David P Dearnaley, Malcolm D Mason, Rachel C Morgan, Karen Sanders, Patrick Royston

Abstract

Background: The multi-arm multi-stage (MAMS) trial is a new paradigm for conducting randomised controlled trials that allows the simultaneous assessment of a number of research treatments against a single control arm. MAMS trials provide earlier answers and are potentially more cost-effective than a series of traditionally designed trials. Prostate cancer is the most common tumour in men and there is a need to improve outcomes for men with hormone-sensitive, advanced disease as quickly as possible. The MAMS design will potentially facilitate evaluation and testing of new therapies in this and other diseases.

Methods: STAMPEDE is an open-label, 5-stage, 6-arm randomised controlled trial using MAMS methodology for men with prostate cancer. It is the first trial of this design to use multiple arms and stages synchronously.

Results: The practical and statistical issues faced by STAMPEDE in implementing MAMS methodology are discussed and contrasted with those for traditional trials. These issues include the choice of intermediate and final outcome measures, sample size calculations and the impact of varying the assumptions, the process for moving between trial stages, stopping accrual to each trial arm and overall, and issues around perceived trial complexity.

Conclusion: It is possible to use the MAMS design to initiate and undertake large scale cancer trials. The results from STAMPEDE will not be known for some years but the lessons learned from running a MAMS trial are shared in the hope that other researchers will use this exciting and efficient method to perform further randomised controlled trials.

Trial registration: ISRCTN78818544, NCT00268476.

Figures

Figure 1
Figure 1
STAMPEDE trial arms. The randomisation ratio is 2A : 1B : 1C : 1D : 1E : 1F. HT = hormone therapy, bid = twice daily.
Figure 2
Figure 2
Progress of STAMPEDE through the trial stages.
Figure 3
Figure 3
Hazard ratio cutpoints for intermediate reviews. HR = Hazard ratio; CI = Confidence interval.
Figure 4
Figure 4
Example output from -nstage- for the reference scenario. This figure shows the exact output from using -nstage-. This does not include the Pilot stage for safety, concentrating only the particular issues relating to the application of the MAMS activity and efficacy stages. In this example, the durations are expressed in quarter-years. The variable factors have been chosen such that no arms are stopped early for lack-of-efficacy (there is 1 control arm and 5 research arms in each stage); the accrual rate is set at 500 patients/year; the median progression-free survival (PFS) and overall survival are estimated to be 24 months and 48 months, respectively; and accrual is uncapped ie recruitment continues to the point of overall maturity. The power was set at 95% for the three activity stages and the observed values are consistent with this.
Figure 5
Figure 5
Hypothetical intermediate results at the end of an intermediate trial stage. HR = Hazard ratio; CI = Confidence interval. In this example, the research arms are drug A, drug B and the combination of drugs A and B; the common control arm is neither drug. The guideline for continuation of recruitment into the next stage is 0·92 compared with the control arm. The research arms containing drug B and drug A+B have met the criteria in this instance; the arm containing drug A has not met the criteria but is showing some evidence of an advantage in terms of the intermediate outcome measure. In this instance and in the absence of safety concerns, the IDMC may decide that recruitment should be continued to all 3 arms.

References

    1. Royston P, Parmar MK, Qian W. Novel designs for multi-arm clinical trials with survival outcomes with an application in ovarian cancer. Stat Med. 2003;22:2239–2256. doi: 10.1002/sim.1430.
    1. Schmidli H, Bretz F, Racine A, Maurer W. Confirmatory seamless phase II/III clinical trials with hypotheses selection at interim: applications and practical considerations. Biom J. 2006;48:635–643. doi: 10.1002/bimj.200510231.
    1. Parmar MKB, Barthel F, Sydes M, Langley R, Kaplan R, Eisenhauer E, et al. Speeding up the Evaluation of New Agents in Cancer. J Natl Cancer Inst. 2008;100:1204–1214. doi: 10.1093/jnci/djn267.
    1. James N, Mason M, Sydes M, Sanders K, Dearnaley D, Anderson J, et al. Successful recruitment to the feasibility stage of STAMPEDE: A multi-arm, multi-stage phase II/III trial in high risk prostate cancer (ISRCTN78818544) Proc ASCO Prostate Cancer Symposium. 2007.
    1. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Anderson J, et al. Systemic therapy for advancing or metastatic prostate cancer (STAMPEDE): a multi-arm, multistage randomized controlled trial. BJU Int. 2009;103:464–469. doi: 10.1111/j.1464-410X.2008.08034.x.
    1. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Anderson J, et al. STAMPEDE: Systemic Therapy for Advancing or Metastatic Prostate Cancer – A Multi-Arm Multi-Stage Randomised Controlled Trial. Clinical Oncology. 2008;20:577–581. doi: 10.1016/j.clon.2008.07.002.
    1. STAMPEDE trial website. 2009.
    1. Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med. 1989;8:431–440. doi: 10.1002/sim.4780080407.
    1. Collette L, Burzykowski T, Schroder FH. Prostate-specific antigen (PSA) alone is not an appropriate surrogate marker of long-term therapeutic benefit in prostate cancer trials. Eur J Cancer. 2006;42:1344–1350. doi: 10.1016/j.ejca.2006.02.011.
    1. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351:1502–1512. doi: 10.1056/NEJMoa040720.
    1. Petrylak DP, Tangen CM, Hussain MH, Lara PN, Jr, Jones JA, Taplin ME, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351:1513–1520. doi: 10.1056/NEJMoa041318.
    1. Gnant M, Mlineritsch B, Schippinger W, Luschin-Ebengreuth G, Poestlberger S, Menzel C, et al. Adjuvant ovarian suppression combined with tamoxifen or anastrozole, alone or in combination with zoledronic acid, in premenopausal women with hormone-responsive, stage I and II breast cancer: First efficacy results from ABCSG-12. J Clin Oncol. 2008;26:LBA4.
    1. Messing EM, Manola J, Yao J, Kiernan M, Crawford D, Wilding G, et al. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol. 2006;7:472–479. doi: 10.1016/S1470-2045(06)70700-8.
    1. Widmark A, Klepp O, Solberg A, Damber JE, Angelsen A, Fransson P, et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet. 2009;373:301–308. doi: 10.1016/S0140-6736(08)61815-2.
    1. Thompson IM, Jr, Tangen CM, Paradelo J, Lucia MS, Miller G, Troyer D, et al. Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA. 2006;296:2329–2335. doi: 10.1001/jama.296.19.2329.
    1. Burzykowski T, Buyse M, Piccart-Gebhart MJ, Sledge G, Carmichael J, Luck HJ, et al. Evaluation of tumor response, disease control, progression-free survival, and time to progression as potential surrogate end points in metastatic breast cancer. J Clin Oncol. 2008;26:1987–1992. doi: 10.1200/JCO.2007.10.8407.
    1. Buyse M, Burzykowski T, Carroll K, Michiels S, Sargent DJ, Miller LL, et al. Progression-free survival is a surrogate for survival in advanced colorectal cancer. J Clin Oncol. 2007;25:5218–5224. doi: 10.1200/JCO.2007.11.8836.
    1. Hackshaw A, Knight A, Barrett-Lee P, Leonard R. Surrogate markers and survival in women receiving first-line combination anthracycline chemotherapy for advanced breast cancer. Br J Cancer. 2005;93:1215–1221. doi: 10.1038/sj.bjc.6602858.
    1. Sherrill B, Amonkar M, Wu Y, Hirst C, Stein S, Walker M, et al. Relationship between effects on time-to-disease progression and overall survival in studies of metastatic breast cancer. Br J Cancer. 2008;99:1572–1578. doi: 10.1038/sj.bjc.6604759.
    1. Shulman MJ, Benaim EA. The natural history of androgen independent prostate cancer. J Urol. 2004;172:141–145. doi: 10.1097/01.ju.0000129051.81608.d8.
    1. Sharifi N, Dahut WL, Steinberg SM, Figg WD, Tarassoff C, Arlen P, et al. A retrospective study of the time to clinical endpoints for advanced prostate cancer. BJU Int. 2005;96:985–989. doi: 10.1111/j.1464-410X.2005.05798.x.
    1. Smaletz O, Scher HI, Small EJ, Verbel DA, McMillan A, Regan K, et al. Nomogram for overall survival of patients with progressive metastatic prostate cancer after castration. J Clin Oncol. 2002;20:3972–3982. doi: 10.1200/JCO.2002.11.021.
    1. Eisenberger MA, Blumenstein BA, Crawford ED, Miller G, McLeod DG, Loehrer PJ, et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med. 1998;339:1036–1042. doi: 10.1056/NEJM199810083391504.
    1. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Lancet. 1995;345:669–685. doi: 10.1016/S0140-6736(95)90865-X.
    1. Grant A, Altman D, Babiker AB, Campbell M, Clemens F, Darbyshire J, et al. Issues in data monitoring and interim analysis of trials. Health Technol Assess. 2005;9:1–238.
    1. DAMOCLES study group A proposed charter for clinical trial Data Monitoring Committees: helping them to do their job well. Lancet. 2005;365:711–722.
    1. Bassler D, Montori VM, Briel M, Glasziou P, Guyatt G. Early stopping of randomized clinical trials for overt efficacy is problematic. J Clin Epidemiol. 2008;61:241–246. doi: 10.1016/j.jclinepi.2007.07.016.
    1. Sydes MR, Parmar MKB. Interim monitoring of efficacy data is important and appropriate. Journal of Clinical Epidemiology. 2008;61:203–204. doi: 10.1016/j.jclinepi.2007.08.002.
    1. Bookman M. GOG0182-ICON5: 5-arm phase III randomized trial of paclitaxel (P) and carboplatin (C) vs combinations with Gemcitabine (G), PEG-liposomal doxorubicin (D), or topotecan (T) in patients (pts) with advanced-stage epithelial ovarian (EOC) or primary peritoneal (PPC) carcinoma. Journal of Clinical Oncology, 2006 ASCO Annual Meeting Proceedings Part I. 2006;24
    1. Seymour MT, Maughan TS, Ledermann JA, Topham C, James R, Gwyther SJ, et al. Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): a randomised controlled trial. Lancet. 2007;370:143–152. doi: 10.1016/S0140-6736(07)61087-3.
    1. National Patient Safety Agency National Research Ethics Service. 2008.
    1. Jagdev SP, Coleman RE, Shipman CM, Rostami H, Croucher PI. The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: evidence for synergy with paclitaxel. Br J Cancer. 2001;84:1126–1134. doi: 10.1054/bjoc.2001.1727.
    1. ICON6 trial website. 2008.

Source: PubMed

3
Tilaa