Metabolomic change due to combined treatment with myo-inositol, D-chiro-inositol and glucomannan in polycystic ovarian syndrome patients: a pilot study

Jacopo Troisi, Claudia Cinque, Luigi Giugliano, Steven Symes, Sean Richards, David Adair, Pierpaolo Cavallo, Laura Sarno, Giovanni Scala, Maria Caiazza, Maurizio Guida, Jacopo Troisi, Claudia Cinque, Luigi Giugliano, Steven Symes, Sean Richards, David Adair, Pierpaolo Cavallo, Laura Sarno, Giovanni Scala, Maria Caiazza, Maurizio Guida

Abstract

Background: Polycystic ovarian syndrome (PCOS) is a highly variable syndrome and one of the most common female endocrine disorders. Although the association inositols-glucomannan may represent a good therapeutic strategy in the treatment of PCOS women with insulin resistance, the effect of inositols on the metabolomic profile of these women has not been described yet.

Results: Fifteen PCOS-patients and 15 controls were enrolled. Patients were treated with myo-inositol (1.75 g/day), D-chiro-inositol (0.25 g/day) and glucomannan (4 g/day) for 3 months. Blood concentrations of glucose, insulin, triglycerides and cholesterol, and ovary volumes and antral follicles count, as well as metabolomic profiles, were evaluated for control subjects and for cases before and after treatment. PCOS-patients had higher BMI compared with Controls, BMI decreased significantly after 3 months of treatment although it remained significantly higher compared to controls. 3-methyl-1-hydroxybutyl-thiamine-diphosphate, valine, phenylalanine, ketoisocapric, linoleic, lactic, glyceric, citric and palmitic acid, glucose, glutamine, creatinine, arginine, choline and tocopherol emerged as the most relevant metabolites for distinguishing cases from controls.

Conclusion: Our pilot study has identified a complex network of serum molecules that appear to be correlated with PCOS, and with a combined treatment with inositols and glucomannan.

Trial registration: ClinicalTial.gov, NCT03608813 . Registered 1st August 2018 - Retrospectively registered, .

Keywords: Inositols-glucomannan association; Metabolomics; Polycystic ovary syndrome.

Conflict of interest statement

Ethics approval and consent to participate

The study was carried out in accordance with the ethical principles of the declaration of Helsinki and approved by the ethics committee CEI “Comitato etico Campania Sud” (IRB N. 78/2016).

Consent for publication

The manuscript describes anonymized data.

Competing interests

JT and GS work for companies (Theoreo srl and Hosmotic srl, respectively) dealing with the development and marketing of diagnostic tests based on metabolomics. All other authors declare no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a Partial least square discriminant analysis (PLS-DA) models to discriminate Controls (CTRL, yellow circles), PCOS patients at enrolment (PCOS-T0, green circles) and PCOS patients after 3-months treatment (PCOS-T1, purple circles). The explained variance of each component is shown in parentheses on the corresponding axis. b The 15 top-scoring VIP metabolites (VIP-score ≥ 1.5) are shown. The colored boxes on the right indicate the relative amount of the corresponding metabolite in each group under study
Fig. 2
Fig. 2
Box and Whisker plot of the VIP metabolites in the cohort of patients and controls. Boxes represent controls (CTRL) n = 15; PCOS patients at the basal enrolment time (PCOS-T0), n = 15; and PCOS patients after 3-months treatment (PCOS-T1), n = 15). The vertical axis reports the log of the GC-MS value of the normalized area of each metabolite. Abbreviations: Gas Chromatography-Mass Spectrometry (GC-MS), Polycystic Ovary Syndrome (PCOS), Thiamine Phosphate (ThPP)
Fig. 3
Fig. 3
Metabolic systems map summarizing the shortest route that may explain the interactions among the 15 selected metabolites. There is a clear interplay of several pathways involving: Biopterin metabolism; De novo fatty acid biosynthesis; Di-unsaturated fatty acid beta-oxidation; Glycerophospholipid metabolism; Glycine, serine, alanine and threonine metabolism; Linoleate metabolism; Saturated fatty acids beta-oxidation; TCA cycle; Tyrosine metabolism; Urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine; Valine, leucine and isoleucine degradation; Vitamin B3 (nicotinate and nicotinamide) metabolism; Vitamin E metabolism

References

    1. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. The androgen excess and PCOS society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91:456–488. doi: 10.1016/j.fertnstert.2008.06.035.
    1. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89:2745–2749. doi: 10.1210/jc.2003-032046.
    1. Fauser BCJM, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-sponsored 3rd PCOS consensus workshop group. Fertil Steril. 2012;97:28–38. doi: 10.1016/j.fertnstert.2011.09.024.
    1. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.
    1. Galazis N, Pang Y-L, Galazi M, Haoula Z, Layfield R, Atiomo W. Proteomic biomarkers of endometrial cancer risk in women with polycystic ovary syndrome: a systematic review and biomarker database integration. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2013;29:638–644. doi: 10.3109/09513590.2013.777416.
    1. Sortino MA, Salomone S, Carruba MO, Drago F. Polycystic ovary syndrome: insights into the therapeutic approach with Inositols. Front Pharmacol. 2017;8:341. doi: 10.3389/fphar.2017.00341.
    1. Kalra B, Kalra S, Sharma J. The inositols and polycystic ovary syndrome. Indian J Endocrinol Metab. 2016;20:720–724. doi: 10.4103/2230-8210.189231.
    1. Bizzarri M, Carlomagno G. Inositol: history of an effective therapy for polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2014;18:1896–1903.
    1. Heimark D, McAllister J, Larner J. Decreased myo-inositol to chiro-inositol (M/C) ratios and increased M/C epimerase activity in PCOS theca cells demonstrate increased insulin sensitivity compared to controls. Endocr J. 2014;61:111–117. doi: 10.1507/endocrj.EJ13-0423.
    1. Larner J. D-chiro-inositol--its functional role in insulin action and its deficit in insulin resistance. Int J Exp Diabetes Res. 2002;3:47–60. doi: 10.1080/15604280212528.
    1. Sun T, Heimark DB, Nguygen T, Nadler JL, Larner J. Both myo-inositol to chiro-inositol epimerase activities and chiro-inositol to myo-inositol ratios are decreased in tissues of GK type 2 diabetic rats compared to Wistar controls. Biochem Biophys Res Commun. 2002;293:1092–1098. doi: 10.1016/S0006-291X(02)00313-3.
    1. Lyon MR, Reichert RG. The effect of a novel viscous polysaccharide along with lifestyle changes on short-term weight loss and associated risk factors in overweight and obese adults: an observational retrospective clinical program analysis. Altern Med Rev J Clin Ther. 2010;15:68–75.
    1. Doi K. Effect of konjac fibre (glucomannan) on glucose and lipids. Eur J Clin Nutr. 1995;49(Suppl 3):S190–S197.
    1. Shima K, Tanaka A, Ikegami H, Tabata M, Sawazaki N, Kumahara Y. Effect of dietary fiber, glucomannan, on absorption of sulfonylurea in man. Horm Metab Res Horm Stoffwechselforschung Horm Metab. 1983;15:1–3. doi: 10.1055/s-2007-1018613.
    1. Scalfi L, Coltorti A, D’Arrigo E, Carandente V, Mazzacano C, Di Palo M, et al. Effect of dietary fibre on postprandial thermogenesis. Int J Obes. 1987;11(Suppl 1):95–99.
    1. Cairella M, Marchini G. Evaluation of the action of glucomannan on metabolic parameters and on the sensation of satiation in overweight and obese patients. Clin Ter. 1995;146:269–274.
    1. Au-Yeung F, Jovanovski E, Jenkins AL, Zurbau A, Ho HVT, Vuksan V. The effects of gelled konjac glucomannan fibre on appetite and energy intake in healthy individuals: a randomised cross-over trial. Br J Nutr. 2018;119:109–116. doi: 10.1017/S0007114517003233.
    1. (NDA) EP on DPN and A. Scientific Opinion on the substantiation of health claims related to konjac mannan (glucomannan) and reduction of body weight (ID 854, 1556, 3725), reduction of post-prandial glycaemic responses (ID 1559), maintenance of normal blood glucose concentrations (ID 835, 3724), maintenance of normal (fasting) blood concentrations of triglycerides (ID 3217), maintenance of normal blood cholesterol concentrations (ID 3100, 3217), maintenance of normal bowel function (ID 834, 1557, 3901) and decreasing potentially pathogenic gastro-intestinal microorganisms (ID 1558) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2010;8 Available from: 10.2903/j.efsa.2010.1798.
    1. De Leo V, Tosti C, Cappelli V, Morgante G, Cianci EA. Combination inositol and glucomannan in PCOS patients. Minerva Ginecol. 2014;66:527–533.
    1. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev. 2011;40:387–426. doi: 10.1039/B906712B.
    1. Gowda GAN, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn. 2008;8:617–633. doi: 10.1586/14737159.8.5.617.
    1. Turkoglu O, Zeb A, Graham S, et al. Metabolomics of biomarker discovery in ovarian cancer: a systematic review of the current literature. Metabolomics. 2016;12(4):60.
    1. Bahado-Singh RO, Lugade A, Field J, Al-Wahab Z, Han B, Mandal R, et al. Metabolomic prediction of endometrial cancer. Metabolomics. 2017;14:6. doi: 10.1007/s11306-017-1290-z.
    1. Troisi J, Sarno L, Landolfi A, Scala G, Martinelli P, Venturella R, et al. Metabolomic signature of endometrial Cancer. J Proteome Res. 2018;17:804–812. doi: 10.1021/acs.jproteome.7b00503.
    1. Murri M, Insenser M, Escobar-Morreale HF. Metabolomics in polycystic ovary syndrome. Clin Chim Acta Int J Clin Chem. 2014;429:181–188. doi: 10.1016/j.cca.2013.12.018.
    1. Zhang Y, Liu L, Yin T-L, Yang J, Xiong C-L. Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget. 2017;8:80472–80480.
    1. Zhao Y, Fu L, Li R, Wang L-N, Yang Y, Liu N-N, et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med. 2012;10:153. doi: 10.1186/1741-7015-10-153.
    1. Couto Alves A, Valcarcel B, Makinen V-P, Morin-Papunen L, Sebert S, Kangas AJ, et al. Metabolic profiling of polycystic ovary syndrome reveals interactions with abdominal obesity. Int J Obes (Lond) 2017;41:1331–1340. doi: 10.1038/ijo.2017.126.
    1. Zhang C, Zhao Y, Li R, Yu Y, Yan L, Li L, et al. Metabolic heterogeneity of follicular amino acids in polycystic ovary syndrome is affected by obesity and related to pregnancy outcome. BMC Pregnancy Childbirth. 2014;14:11. doi: 10.1186/1471-2393-14-11.
    1. Whigham LD, Butz DE, Dashti H, Tonelli M, Johnson LK, Cook ME, et al. Metabolic evidence of diminished lipid oxidation in women with polycystic ovary syndrome. Curr Metabolomics. 2014;2:269–278. doi: 10.2174/2213235X01666131203230512.
    1. Samino S, Vinaixa M, Diaz M, Beltran A, Rodriguez MA, Mallol R, et al. Metabolomics reveals impaired maturation of HDL particles in adolescents with hyperinsulinaemic androgen excess. Sci Rep. 2015;5:11496. doi: 10.1038/srep11496.
    1. Vinaixa M, Rodriguez MA, Samino S, Diaz M, Beltran A, Mallol R, et al. Metabolomics reveals reduction of metabolic oxidation in women with polycystic ovary syndrome after pioglitazone-flutamide-metformin polytherapy. PLoS One. 2011;6:e29052. doi: 10.1371/journal.pone.0029052.
    1. Selen Alpergin ES, Bolandnazar Z, Sabatini M, Rogowski M, Chiellini G, Zucchi R, et al. Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol Rep. 2017;5:e13097. doi: 10.14814/phy2.13097.
    1. Karakas SE, Perroud B, Kind T, Palazoglu M, Fiehn O. Changes in plasma metabolites and glucose homeostasis during omega-3 polyunsaturated fatty acid supplementation in women with polycystic ovary syndrome. BBA Clin. 2016;5:179–185. doi: 10.1016/j.bbacli.2016.04.003.
    1. Rosenfield RL. The diagnosis of polycystic ovary syndrome in adolescents. Pediatrics. 2015;136:1154–1165. doi: 10.1542/peds.2015-1430.
    1. Gilbert EW, Tay CT, Hiam DS, Teede HJ, Moran LJ. Comorbidities and complications of polycystic ovary syndrome: an overview of systematic reviews. Clin Endocrinol (Oxf). 2018;0 Available from: 10.1111/cen.13828.
    1. Sun L, Hu W, Liu Q, Hao Q, Sun B, Zhang Q, et al. Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients. J Proteome Res. 2012;11:2937–2946. doi: 10.1021/pr3000317.
    1. Landin K, Lonnroth P, Krotkiewski M, Holm G, Smith U. Increased insulin resistance and fat cell lipolysis in obese but not lean women with a high waist/hip ratio. Eur J Clin Investig. 1990;20:530–535. doi: 10.1111/j.1365-2362.1990.tb01922.x.
    1. Escobar-Morreale HF, Samino S, Insenser M, Vinaixa M, Luque-Ramirez M, Lasuncion MA, et al. Metabolic heterogeneity in polycystic ovary syndrome is determined by obesity: plasma metabolomic approach using GC-MS. Clin Chem. 2012;58:999–1009. doi: 10.1373/clinchem.2011.176396.
    1. Marei WF, Wathes DC, Fouladi-Nashta AA. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reprod Camb Engl. 2010;139:979–988.
    1. Escobar-Morreale HF, Luque-Ramirez M, Gonzalez F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertil Steril. 2011;95:1048–1058. doi: 10.1016/j.fertnstert.2010.11.036.
    1. Ojeda-Ojeda M, Murri M, Insenser M, Escobar-Morreale HF. Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS) Curr Pharm Des. 2013;19:5775–5791. doi: 10.2174/1381612811319320012.
    1. Gaster M, Nehlin JO, Minet AD. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: marker or maker of the diabetic phenotype? Arch Physiol Biochem. 2012;118:156–189. doi: 10.3109/13813455.2012.656653.
    1. Jimenez PT, Frolova AI, Chi MM, Grindler NM, Willcockson AR, Reynolds KA, et al. DHEA-mediated inhibition of the pentose phosphate pathway alters oocyte lipid metabolism in mice. Endocrinology. 2013;154:4835–4844. doi: 10.1210/en.2012-2140.
    1. Witchel SF, Oberfield S, Rosenfield RL, Codner E, Bonny A, Ibáñez L, et al. The diagnosis of polycystic ovary syndrome during adolescence. Horm Res Paediatr. 2015;83:376–389. doi: 10.1159/000375530.
    1. Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98:4565–4592. doi: 10.1210/jc.2013-2350.
    1. Laganà AS, Rossetti P, Buscema M, La Vignera S, Condorelli RA, Gullo G, et al. Metabolism and ovarian function in PCOS women: a therapeutic approach with Inositols. Int J Endocrinol. 2016;2016:6306410. doi: 10.1155/2016/6306410.
    1. Unfer V, Nestler JE, Kamenov ZA, Prapas N, Facchinetti F. Effects of inositol(s) in women with PCOS: a systematic review of randomized controlled trials. Int J Endocrinol. 2016;2016:1849162. doi: 10.1155/2016/1849162.
    1. Gateva A, Unfer V, Kamenov Z. The use of inositol(s) isomers in the management of polycystic ovary syndrome: a comprehensive review. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2018;34:545–550. doi: 10.1080/09513590.2017.1421632.
    1. Dong F, Deng D, Chen H, Cheng W, Li Q, Luo R, et al. Serum metabolomics study of polycystic ovary syndrome based on UPLC-QTOF-MS coupled with a pattern recognition approach. Anal Bioanal Chem. 2015;407:4683–4695. doi: 10.1007/s00216-015-8670-x.
    1. Focker M, Timmesfeld N, Scherag S, Knoll N, Singmann P, Wang-Sattler R, et al. Comparison of metabolic profiles of acutely ill and short-term weight recovered patients with anorexia nervosa reveals alterations of 33 out of 163 metabolites. J Psychiatr Res. 2012;46:1600–1609. doi: 10.1016/j.jpsychires.2012.08.015.
    1. Pundir J, Psaroudakis D, Savnur P, Bhide P, Sabatini L, Teede H, et al. Inositol treatment of anovulation in women with polycystic ovary syndrome: a meta-analysis of randomised trials. BJOG Int J Obstet Gynaecol. 2018;125:299–308. doi: 10.1111/1471-0528.14754.
    1. Tang T, Lord JM, Norman RJ, Yasmin E, Balen AH. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev. 2009;11:CD003053.
    1. Moore CG, Carter RE, Nietert PJ, Stewart PW. Recommendations for planning pilot studies in clinical and translational research. Clin Transl Sci. 2011;4:332–337. doi: 10.1111/j.1752-8062.2011.00347.x.
    1. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91:4237–4245. doi: 10.1210/jc.2006-0178.
    1. Panidis D, Tziomalos K, Papadakis E, Chatzis P, Kandaraki EA, Tsourdi EA, et al. The clinical significance and primary determinants of hirsutism in patients with polycystic ovary syndrome. Eur J Endocrinol. 2013;168:871–877. doi: 10.1530/EJE-13-0039.
    1. Coskun A, Ercan O, Arikan DC, Ozer A, Kilinc M, Kiran G, et al. Modified Ferriman-Gallwey hirsutism score and androgen levels in Turkish women. Eur J Obstet Gynecol Reprod Biol. 2011;154:167–171. doi: 10.1016/j.ejogrb.2010.10.001.
    1. Amiri M, Ramezani Tehrani F, Nahidi F, Bidhendi Yarandi R, Behboudi-Gandevani S, Azizi F. Association between biochemical hyperandrogenism parameters and Ferriman-Gallwey score in patients with polycystic ovary syndrome: a systematic review and meta-regression analysis. Clin Endocrinol. 2017;87:217–230. doi: 10.1111/cen.13389.
    1. Cibula D, Hill M, Starka L. The best correlation of the new index of hyperandrogenism with the grade of increased body hair. Eur J Endocrinol. 2000;143:405–408. doi: 10.1530/eje.0.1430405.
    1. Ferriman D, Gallwey JD. Clinical assessment of body hair growth in women. J Clin Endocrinol Metab. 1961;21:1440–1447. doi: 10.1210/jcem-21-11-1440.
    1. Goodman NF, Bledsoe MB, Cobin RH, Futterweit W, Goldzieher JW, Petak SM, Smith KD, Steinberger E, American Association of Clinical Endocrinologists Hyperandrogenic Disorders Task Force American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the Diagnosis and Treatment of Hyperandrogenic Disorders. Endocr Pract. 2001;7:120–134. doi: 10.4158/EP.7.2.120.
    1. Lehmann HP, Robinson KA, Andrews JS, Holloway V, Goodman SN. Acne therapy: a methodologic review. J Am Acad Dermatol. 2002;47:231–240. doi: 10.1067/mjd.2002.120912.
    1. Hallberg L, Hogdahl AM, Nilsson L, Rybo G. Menstrual blood loss--a population study. Variation at different ages and attempts to define normality. Acta Obstet Gynecol Scand. 1966;45:320–351. doi: 10.3109/00016346609158455.
    1. Magnay JL, Nevatte TM, Seitz C, O’Brien S. A new menstrual pictogram for use with feminine products that contain superabsorbent polymers. Fertil Steril. 2013;100:1715–1721. doi: 10.1016/j.fertnstert.2013.08.028.
    1. World Medical Association World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053.
    1. Troisi J, Sarno L, Martinelli P, Di Carlo C, Landolfi A, Scala G, et al. A metabolomics-based approach for non-invasive diagnosis of chromosomal anomalies. Metabolomics. 2017;13:140. doi: 10.1007/s11306-017-1274-z.
    1. Troisi J, Landolfi A, Sarno L, Richards S, Symes S, Adair D, et al. A metabolomics-based approach for non-invasive screening of fetal central nervous system anomalies. Metabolomics. 2018;14:77. doi: 10.1007/s11306-018-1370-8.
    1. van Iterson M, ‘t Hoen PAC, Pedotti P, Hooiveld GJEJ, den Dunnen JT, van Ommen GJB, et al. Relative power and sample size analysis on gene expression profiling data. BMC Genomics. 2009;10:439. doi: 10.1186/1471-2164-10-439.
    1. Ferreira JA, Zwinderman A. Approximate sample size calculations with microarray data: an illustration. Stat Appl Genet Mol Biol. 2006;5:Article25. doi: 10.2202/1544-6115.1227.
    1. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. PLS Methods. 2001;58:109–130.
    1. Mevik B-H, Wehrens R. The pls package: principal component and partial least squares regression in R. J Stat Softw. 2007;1 Available from: .
    1. Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;1 Available from: .
    1. Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, et al. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem. 2006;78:567–574. doi: 10.1021/ac051495j.
    1. Karnovsky A, Weymouth T, Hull T, Tarcea VG, Scardoni G, Laudanna C, et al. Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinforma Oxf Engl. 2012;28:373–380. doi: 10.1093/bioinformatics/btr661.
    1. Nishida K, Ono K, Kanaya S, Takahashi K. KEGGscape: a Cytoscape app for pathway data integration. F1000Research. 2014;3:144. doi: 10.12688/f1000research.4524.1.

Source: PubMed

3
Tilaa