Neuroprotective Effects of Açaí ( Euterpe oleracea Mart.) against Rotenone In Vitro Exposure

Alencar Kolinski Machado, Ana Cristina Andreazza, Tatiane Morgana da Silva, Aline Augusti Boligon, Vanusa do Nascimento, Gustavo Scola, Angela Duong, Francine Carla Cadoná, Euler Esteves Ribeiro, Ivana Beatrice Mânica da Cruz, Alencar Kolinski Machado, Ana Cristina Andreazza, Tatiane Morgana da Silva, Aline Augusti Boligon, Vanusa do Nascimento, Gustavo Scola, Angela Duong, Francine Carla Cadoná, Euler Esteves Ribeiro, Ivana Beatrice Mânica da Cruz

Abstract

Neuropsychiatric diseases, such as bipolar disorder (BD) and schizophrenia (SCZ), have a very complex pathophysiology. Several current studies describe an association between psychiatric illness and mitochondrial dysfunction and consequent cellular modifications, including lipid, protein, and DNA damage, caused by cellular oxidative stress. Euterpe oleracea (açaí) is a powerful antioxidant fruit. Açaí is an Amazonian palm fruit primarily found in the lowlands of the Amazonian rainforest, particularly in the floodplains of the Amazon River. Given this proposed association, this study analyzed the potential in vitro neuropharmacological effect of Euterpe oleracea (açaí) extract in the modulation of mitochondrial function and oxidative metabolism. SH-SY5Y cells were treated with rotenone to induce mitochondrial complex I dysfunction and before and after we exposed the cells to açaí extract at 5 μg/mL. Treated and untreated cells were then analyzed by spectrophotometric, fluorescent, immunological, and molecular assays. The results showed that açaí extract can potentially increase protein amount and enzyme activity of mitochondrial complex I, mainly through NDUFS7 and NDUFS8 overexpression. Açaí extract was also able to decrease cell reactive oxygen species levels and lipid peroxidation. We thus suggest açaí as a potential candidate for drug development and a possible alternative BD therapy.

Figures

Figure 1
Figure 1
Representative high performance liquid chromatography profile of Euterpe oleracea freeze-dried hydroalcoholic extract. Gallic acid (peak 1), catechin (peak 2), chlorogenic acid (peak 3), caffeic acid (peak 4), p-coumaric acid (peak 5), epicatechin (peak 6), orientin (peak 7), vitexin (peak 8), cyanidin-3-0-glucoside (peak 9), luteolin (peak 10), apigenin (peak 11), and chrysin (peak 12).
Figure 2
Figure 2
Cell viability measurements. (a) SH-SY5Y cells exposure to 5, 15, and 30 nM of rotenone during 24 h showing significant cell mortality for all concentrations; (b, c, and d) SH-SY5Y cells exposure to different concentrations of açaí freeze-dried hydroalcoholic extract during 24, 48, and 72 h showing a hormetic cell response; (e–p) microscopic scanning of SH-SY5Y cells exposure to rotenone and/or açaí freeze-dried hydroalcoholic extract (5 μg/mL) showing the cytotoxic effect of rotenone and the protective action of açaí freeze-dried hydroalcoholic extract. p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
Figure 3
Figure 3
Cellular oxidative phosphorylation pathway measurements. (a–j) Rotenone exposition decreased mitochondrial complex I and increased mitochondrial complexes II and III, and açaí freeze-dried hydroalcoholic extract normalized the protein expressions. (k and l) Rotenone decreased mitochondrial complex I enzyme activity and açaí freeze-dried hydroalcoholic extract was able to increase enzyme activity in both designs of experiment. p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
Figure 4
Figure 4
Mitochondrial complex I subunits analysis by western blot and qRT-PCR assays. The order of treatment for all the blot images: 0, Rot. 5, Rot. 15, Rot. 30, A+R5, A+R15, A+R30, R5+A, R15+A, and R30+A; (a and b) NDUFS7 protein expression analysis; (c and d) NDUFS8 protein expression analysis; (e and f) NDUFV1 protein expression analysis; (g and h) NDUFV2 protein expression analysis. Gene expression analysis follows the same graph order where gray means normal gene expression, green means downregulation gene expression, and red means upregulation gene expression. (i and j) NDUFS7 gene expression analysis; (k and l) NDUFS8 gene expression analysis; (m and n) NDUFV1 gene expression analysis; (o and p) NDUFV2 gene expression analysis. p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
Figure 5
Figure 5
Cell oxidative metabolism biomarker measurements. (a and b) Total levels of ROs measured by DCFH-DA assay; (c and d) lipid peroxidation measured by TBARS assay. While rotenone increased ROs levels in a dose-dependent way and also lipid peroxidation, açaí freeze-dried hydroalcoholic extract was able to decrease both biomarkers compared to the negative control. p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
Figure 6
Figure 6
Protective effects of açaí supplementation in neuron-like cells SH-SY5Y exposed to rotenone. ① Rotenone causing mitochondrial complex I dysfunction, increasing superoxide production, and decreasing ATP synthesis; ② açaí freeze-dried hydroalcoholic extract supplementation acting at cell nucleus; ③ açaí freeze-dried hydroalcoholic extract increasing NDUFS7 and NDUFS8 gene expression in particular; ④ NDUFS7 and NDUFS8 protein production in response to the gene overexpression; ⑤ mitochondrial complex I assembly by new protein subunits; ⑥ renormalization of the mitochondrial electron transport chain, decreasing the oxidative stress, and normalizing ATP synthesis. ⑦ Decreased lipid peroxidation in consequence of the oxidative metabolism balance recovery.

References

    1. Epstein I., Szpindel I., Katzman M. A. Pharmacological approaches to manage persistent symptoms of major depressive disorder: rationale and therapeutic strategies. Psychiatry Research. 2014;220(supplement 1):S15–S33. doi: 10.1016/s0165-1781(14)70003-4.
    1. Millan M. J., Goodwin G. M., Meyer-Lindenberg A., Ove Ogren S. Learning from the past and looking to the future: emerging perspectives for improving the treatment of psychiatric disorders. European Neuropsychopharmacology. 2015;25(5):599–656. doi: 10.1016/j.euroneuro.2015.01.016.
    1. Alonso J., Petukhova M., Vilagut G., et al. Days out of role due to common physical and mental conditions: results from the WHO World Mental Health surveys. Molecular Psychiatry. 2011;16(12):1234–1246. doi: 10.1038/mp.2010.101.
    1. Grande I., Berk M., Birmaher B., Vieta E. Bipolar disorder. The Lancet. 2016;387(10027):1561–1572. doi: 10.1016/S0140-6736(15)00241-X.
    1. Craddock N., Sklar P. Genetics of bipolar disorder. The Lancet. 2013;381(9878):1654–1662. doi: 10.1016/s0140-6736(13)60855-7.
    1. Clay H. B., Sillivan S., Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. International Journal of Developmental Neuroscience. 2011;29(3):311–324. doi: 10.1016/j.ijdevneu.2010.08.007.
    1. Manji H., Kato T., Di Prospero N. A., et al. Impaired mitochondrial function in psychiatric disorders. Nature Reviews Neuroscience. 2012;13(5):293–307. doi: 10.1038/nrn3229.
    1. Scola G., Kim H. K., Young L. T., Andreazza A. C. A fresh look at complex I in microarray data: clues to understanding disease-specific mitochondrial alterations in bipolar disorder. Biological Psychiatry. 2013;73(2):e4–e5. doi: 10.1016/j.biopsych.2012.06.028.
    1. Andreazza A. C., Shoo L., Wang J.-F., Trevor Young L. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Archives of General Psychiatry. 2010;67(4):360–368. doi: 10.1001/archgenpsychiatry.2010.22.
    1. Berk M., Kapczinski F., Andreazza A. C., et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neuroscience & Biobehavioral Reviews. 2011;35(3):804–817. doi: 10.1016/j.neubiorev.2010.10.001.
    1. Akarsu S., Torun D., Bolu A., et al. Mitochondrial complex I and III gene mRNA levels in schizophrenia, and their relationship with clinical features. Journal of Molecular Psychiatry. 2014;2(1):1–6. doi: 10.1186/s40303-014-0006-9.
    1. Beal M. F. Oxidatively modified proteins in aging and disease. Free Radical Biology and Medicine. 2002;32(9):797–803. doi: 10.1016/S0891-5849(02)00780-3.
    1. Curran G., Ravindran A. Lithium for bipolar disorder: a review of the recent literature. Expert Review of Neurotherapeutics. 2014;14(9):1079–1098. doi: 10.1586/14737175.2014.947965.
    1. Grunze H., Vieta E., Goodwin G. M., et al. The World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the biological treatment of bipolar disorders: update 2010 on the treatment of acute bipolar depression. The World Journal of Biological Psychiatry. 2010;11(2):81–109. doi: 10.3109/15622970903555881.
    1. Goodwin G. M. Evidence-based guidelines for treating bipolar disorder: revised second edition-recommendations from the British association for psychopharmacology. Journal of Psychopharmacology. 2009;23(4):346–388. doi: 10.1177/0269881109102919.
    1. Hou L., Xiong N., Liu L., et al. Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement. BMC Neuroscience. 2015;16, article 82 doi: 10.1186/s12868-015-0222-y.
    1. Kleiner J., Altshuler L., Hendrick V., Hershman J. M. Lithium-induced subclinical hypothyroidism: review of the literature and guidelines for treatment. The Journal of Clinical Psychiatry. 1999;60(4):249–255. doi: 10.4088/jcp.v60n0409.
    1. Markowitz G. S., Radhakrishnan J., Kambham N., Valeri A. M., Hines W. H., D'Agati V. D. Lithium nephrotoxicity: a progressive combined glomerular and tubulointerstitial nephropathy. Journal of the American Society of Nephrology. 2000;11(8):1439–1448.
    1. Young A. H., Newham J. I. Lithium in maintenance therapy for bipolar disorder. Journal of Psychopharmacology. 2006;20(2):17–22. doi: 10.1177/1359786806063072.
    1. Kang J., Thakali K. M., Xie C., et al. Bioactivities of açaí (Euterpe precatoria Mart.) fruit pulp, superior antioxidant and anti-inflammatory properties to Euterpe oleracea Mart. Food Chemistry. 2012;133(3):671–677. doi: 10.1016/j.foodchem.2012.01.048.
    1. Jensen G. S., Wu X., Patterson K. M., et al. In vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study. Journal of Agricultural and Food Chemistry. 2008;56(18):8326–8333. doi: 10.1021/jf8016157.
    1. Poulose S. M., Bielinski D. F., Carey A., Schauss A. G., Shukitt-Hale B. Modulation of oxidative stress, inflammation, autophagy and expression of Nrf2 in hippocampus and frontal cortex of rats fed with açaí-enriched diets. Nutritional Neuroscience. 2016 doi: 10.1080/1028415x.2015.1125654.
    1. Sun X., Seeberger J., Alberico T., et al. Açai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Experimental Gerontology. 2010;45(3):243–251. doi: 10.1016/j.exger.2010.01.008.
    1. Poulose S. M., Fisher D. R., Bielinski D. F., et al. Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich açaí (Euterpe spp.) fruit pulp extracts in rodent brain cells invitro. Nutrition. 2014;30(7-8):853–862. doi: 10.1016/j.nut.2013.11.011.
    1. Carey A. N., Miller M. G., Fisher D. R., et al. Dietary supplementation with the polyphenol-rich açaí pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells. Nutritional Neuroscience. 2015 doi: 10.1080/1028415x.2015.1115213.
    1. Poulose S. M., Fisher D. R., Larson J., et al. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. Journal of Agricultural and Food Chemistry. 2012;60(4):1084–1093. doi: 10.1021/jf203989k.
    1. Odendaal Y. A., Schauss A. G. Potent antioxidant and anti-inflammatory flavonoids in the nutrient-rich Amazonian palm fruit, açaí (Euterpe spp.) In: Watson R. R., Reedy V. R., Zibadi S., editors. Polyphenols in Human Health and Disease. San Diego, Calif, USA: Academic Press; 2014. pp. 219–239.
    1. Solanki I., Parihar P., Parihar M. S. Neurodegenerative diseases: from available treatments to prospective herbal therapy. Neurochemistry International. 2016;95:100–108. doi: 10.1016/j.neuint.2015.11.001.
    1. Schauss A. G., Wu X., Prior R. L., et al. Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (Acai) Journal of Agricultural and Food Chemistry. 2006;54(22):8604–8610. doi: 10.1021/jf0609779.
    1. Schauss A. G., Wu X., Prior R. L., et al. Phytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleraceae Mart. (Acai) Journal of Agricultural and Food Chemistry. 2006;54(22):8598–8603. doi: 10.1021/jf060976g.
    1. García-Lafuente A., Guillamón E., Villares A., Rostagno M. A., Martínez J. A. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflammation Research. 2009;58(9):537–552. doi: 10.1007/s00011-009-0037-3.
    1. González-Gallego J., Sánchez-Campos S., Tuñón M. J. Anti-inflammatory properties of dietary flavonoids. Nutricion Hospitalaria. 2007;22(3):287–293.
    1. Xie C., Kang J., Li Z., et al. The açaí flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-κB activation and MAPK pathway. Journal of Nutritional Biochemistry. 2012;23(9):1184–1191. doi: 10.1016/j.jnutbio.2011.06.013.
    1. Nicholas C., Batra S., Vargo M. A., et al. Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-κB through the suppression of p65 phosphorylation. The Journal of Immunology. 2007;179(10):7121–7127. doi: 10.4049/jimmunol.179.10.7121.
    1. Zhao L., Wang J.-L., Liu R., Li X.-X., Li J.-F., Zhang L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer's disease mouse model. Molecules. 2013;18(8):9949–9965. doi: 10.3390/molecules18089949.
    1. Patil S. P., Jain P. D., Sancheti J. S., Ghumatkar P. J., Tambe R., Sathaye S. Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology. 2014;86:192–202. doi: 10.1016/j.neuropharm.2014.07.012.
    1. Cai M., Ma Y., Zhang W., et al. Apigenin-7-0-β-d-(-6″-p-coumaroyl)-glucopyranoside treatment elicits neuroprotective effect against experimental ischemic stroke. International Journal of Biological Sciences. 2016;12(1):42–52.
    1. Yamagata K., Kitazawa T., Shinoda M., Tagawa C., Chino M., Matsufuji H. Stroke status evoked adhesion molecule genetic alterations in astrocytes isolated from stroke-prone spontaneously hypertensive rats and the apigenin inhibition of their expression. Stroke Research and Treatment. 2010;2010:11. doi: 10.4061/2010/386389.386389
    1. Klimaczewski C. V., Saraiva R. D. A., Roos D. H., et al. Antioxidant activity of Peumus boldus extract and alkaloid boldine against damage induced by Fe(II)-citrate in rat liver mitochondria in vitro. Industrial Crops and Products. 2014;54:240–247. doi: 10.1016/j.indcrop.2013.11.051.
    1. Abbas S. R., Sabir S. M., Ahmad S. D., Boligon A. A., Athayde M. L. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum) Food Chemistry. 2014;147:10–16. doi: 10.1016/j.foodchem.2013.09.113.
    1. Kim H. K., Mendonça K. M., Howson P. A., Brotchie J. M., Andreazza A. C. The link between mitochondrial complex i and brain-derived neurotrophic factor in SH-SY5Y cells—the potential of JNX1001 as a therapeutic agent. European Journal of Pharmacology. 2015;764:379–384. doi: 10.1016/j.ejphar.2015.07.013.
    1. Andreazza A. C., Wang J.-F., Salmasi F., Shao L., Young L. T. Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. Journal of Neurochemistry. 2013;127(4):552–561. doi: 10.1111/jnc.12316.
    1. Costa F., Dornelles E., Mânica-Cattani M. F., et al. Influence of Val16Ala SOD2 polymorphism on the in-vitro effect of clomiphene citrate in oxidative metabolism. Reproductive BioMedicine Online. 2012;24(4):474–481. doi: 10.1016/j.rbmo.2012.01.009.
    1. Mimaki M., Wang X., McKenzie M., Thorburn D. R., Ryan M. T. Understanding mitochondrial complex I assembly in health and disease. Biochimica et Biophysica Acta—Bioenergetics. 2012;1817(6):851–862. doi: 10.1016/j.bbabio.2011.08.010.
    1. Brazier-Hicks M., Evans K. M., Gershater M. C., Puschmann H., Steel P. G., Edwards R. The C-glycosylation of flavonoids in cereals. The Journal of Biological Chemistry. 2009;284(27):17926–17934. doi: 10.1074/jbc.m109.009258.
    1. Law B. N. T., Ling A. P. K., Koh R. Y., Chye S. M., Wong Y. P. Neuroprotective effects of orientin on hydrogen peroxide induced apoptosis in SHSY5Y cells. Molecular Medicine Reports. 2014;9(3):947–954. doi: 10.3892/mmr.2013.1878.
    1. Simirgiotis M. J., Schmeda-Hirschmann G., Bórquez J., Kennelly E. J. The Passiflora tripartita (banana passion) fruit: a source of bioactive flavonoid C-glycosides isolated by HSCCC and characterized by HPLC-DAD-ESI/MS/MS. Molecules. 2013;18(2):1672–1692. doi: 10.3390/molecules18021672.
    1. Yoo H., Ku S.-K., Lee T., Bae J.-S. Orientin inhibits HMGB1-induced inflammatory responses in HUVECs and in murine polymicrobial sepsis. Inflammation. 2014;37(5):1705–1717. doi: 10.1007/s10753-014-9899-9.
    1. An F., Yang G. D., Tian J. M., Wang S. H. Antioxidant effects of the orientin and vitexin in trollius chinensis bunge in D-galactose-aged mice. Neural Regeneration Research. 2012;7(33):2565–2575. doi: 10.3969/j.issn.1673-5374.2012.33.001.
    1. Mathew S., Abraham T. E., Zakaria Z. A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science and Technology. 2015;52(9):5790–5798. doi: 10.1007/s13197-014-1704-0.
    1. Popović M., Caballero-Bleda M., Benavente-García O., Castillo J. The flavonoid apigenin delays forgetting of passive avoidance conditioning in rats. Journal of Psychopharmacology. 2014;28(5):498–501. doi: 10.1177/0269881113512040.
    1. Hollman P. C. H., Katan M. B. Health effects and bioavailability of dietary flavonols. Free Radical Research. 1999;31:S75–S80. doi: 10.1080/10715769900301351.
    1. van Praag H., Lucero M. J., Yeo G. W., et al. Plant-derived flavanol (−)epicatechin enhances angiogenesis and retention of spatial memory in mice. The Journal of Neuroscience. 2007;27(22):5869–5878. doi: 10.1523/jneurosci.0914-07.2007.
    1. Rangel-Ordóñez L., Nöldner M., Schubert-Zsilavecz M., Wurglics M. Plasma levels and distribution of flavonoids in rat brain after single and repeated doses of standardized Ginkgo biloba extract EGb 761®. Planta Medica. 2010;76(15):1683–1690. doi: 10.1055/s-0030-1249962.
    1. Milbury P. E., Kalt W. Xenobiotic metabolism and berry flavonoid transport across the blood-brain barrier. Journal of Agricultural and Food Chemistry. 2010;58(7):3950–3956. doi: 10.1021/jf903529m.
    1. Wong D. Y. S., Musgrave I. F., Harvey B. S., Smid S. D. Açaí (Euterpe oleraceae Mart.) berry extract exerts neuroprotective effects against β-amyloid exposure in vitro. Neuroscience Letters. 2013;556:221–226. doi: 10.1016/j.neulet.2013.10.027.
    1. Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs and Aging. 2001;18(9):685–716. doi: 10.2165/00002512-200118090-00004.
    1. Scola G., Kim H. K., Young L. T., Salvador M., Andreazza A. C. Lithium reduces the effects of rotenone-induced complex I dysfunction on DNA methylation and hydroxymethylation in rat cortical primary neurons. Psychopharmacology. 2014;231(21):4189–4198. doi: 10.1007/s00213-014-3565-7.
    1. Guerra J. F. D. C., Magalhães C. L. D. B., Costa D. C., Silva M. E., Pedrosa M. L. Dietary açai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats. Journal of Clinical Biochemistry and Nutrition. 2011;49(3):188–194. doi: 10.3164/jcbn.11-02.
    1. Masella R., Di Benedetto R., Varì R., Filesi C., Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. The Journal of Nutritional Biochemistry. 2005;16(10):577–586. doi: 10.1016/j.jnutbio.2005.05.013.
    1. Lannuzel A., Höglinger G. U., Champy P., Michel P. P., Hirsch E. C., Ruberg M. Is atypical parkinsonism in the Caribbean caused by the consumption of Annonacae? Journal of Neural Transmission. 2006;2006(70):153–157.

Source: PubMed

3
Tilaa