Glucocorticoid Receptor Antagonism Upregulates Somatostatin Receptor Subtype 2 Expression in ACTH-Producing Neuroendocrine Tumors: New Insight Based on the Selective Glucocorticoid Receptor Modulator Relacorilant

Rosario Pivonello, Pamela N Munster, Massimo Terzolo, Rosario Ferrigno, Chiara Simeoli, Soraya Puglisi, Utsav Bali, Andreas G Moraitis, Rosario Pivonello, Pamela N Munster, Massimo Terzolo, Rosario Ferrigno, Chiara Simeoli, Soraya Puglisi, Utsav Bali, Andreas G Moraitis

Abstract

Somatostatin exhibits an inhibitory effect on pituitary hormone secretion, including inhibition of growth hormone and adrenocorticotropic hormone (ACTH), and it can have antisecretory and antitumor effects on neuroendocrine tumors (NETs) that express somatostatin receptors. Although the precise mechanism remains unclear, the finding that glucocorticoids downregulate somatostatin receptor subtype 2 (SSTR2) expression has been used to explain the lack of efficacy of traditional SSTR2-targeting analogs in patients with ACTH-secreting NETs. Glucocorticoid receptor (GR) antagonism with mifepristone has been shown to reverse the glucocorticoid-induced downregulation of SSTR2; however, the effects of GR modulation on SSTR2 expression in ACTH-secreting NETs, particularly corticotroph pituitary tumors, are not well known. The current study presents new insight from in vitro data using the highly selective GR modulator relacorilant, showing that GR modulation can overcome dexamethasone-induced suppression of SSTR2 in the murine At-T20 cell line. Additional data presented from clinical case observations in patients with ACTH-secreting NETs suggest that upregulation of SSTR2 via GR modulation may re-sensitize tumors to endogenous somatostatin and/or somatostatin analogs. Clinical, laboratory, and imaging findings from 4 patients [2 ACTH-secreting bronchial tumors and 2 ACTH-secreting pituitary tumors (Cushing disease)] who were treated with relacorilant as part of two clinical studies (NCT02804750 and NCT02762981) are described. In the patients with ectopic ACTH secretion, SSTR2-based imaging (Octreoscan and 68Ga-DOTATATE positron emission tomography) performed before and after treatment with relacorilant showed increased radiotracer uptake by the tumor following treatment with relacorilant without change in tumor size at computed tomography. In the patients with Cushing disease who received relacorilant prior to scheduled pituitary surgery, magnetic resonance imaging after a 3-month course of relacorilant showed a reduction in tumor size. Based on these findings, we propose that GR modulation in patients with ACTH-secreting NETs upregulates previously suppressed SSTR2s, resulting in tumor-specific antisecretory and anti-proliferative effects. The effect of relacorilant on pituitary corticotroph tumors is being investigated in an ongoing phase 3 study (NCT03697109; EudraCT 2018-003096-35).

Keywords: Cushing disease; adrenocorticotropic hormone; cortisol; ectopic ACTH syndrome; glucocorticoid; neuroendocrine tumor; relacorilant; somatostatin.

Conflict of interest statement

RP: Consultant: Ferring, Ipsen, Novartis, Pfizer, ViroPharma-Shire; Speaker: Novartis, ViroPharma-Shire; Research support: Corcept Therapeutics, Novartis, ViroPharma-Shire; Grant support: IBSA, Novartis, Pfizer, ViroPharma-Shire. PM: Consultant: Atlas, Alessa, EpiAxis, Rascal and AstraZeneca. MT: Consultant: HRA Pharma; Research support: Corcept Therapeutics. CS: Consultant: Ipsen, ViroPharma-Shire. UB: Consultant: Corcept Therapeutics; Employee: Sygnature Discovery, Ltd. AM: Employee: Corcept Therapeutics. The authors declare that the studies received funding from Corcept Therapeutics (Menlo Park, CA, USA). The funder had a role in study design, data collection and analysis. MA was employed by the company Corcept Therapeutics and, as an author of the manuscript and employee of Corcept Therapeutics, had a role in the study design, the decision to publish, the interpretation of clinical data, the revision of the manuscript, and approval of the final manuscript to submit. UB was employed by the company Sygnature Discovery Ltd. and, as an author of the manuscript and employee of Sygnature Discovery Ltd., supported by the funder, had a role in the preclinical data analysis and interpretation, decision to publish, revision of the manuscript, and approval of the final manuscript to submit. Open Access publication fees were paid by Corcept Therapeutics.

Copyright © 2022 Pivonello, Munster, Terzolo, Ferrigno, Simeoli, Puglisi, Bali and Moraitis.

Figures

Figure 1
Figure 1
The effects of glucocorticoid and glucocorticoid modulation with relacorilant on SSTR regulation. Created with BioRender.com.
Figure 2
Figure 2
Log2 fold change in SSTR2 mRNA in murine At-T20 cells upon treatment with increasing concentrations of relacorilant for 24 h in the presence of 100 nM dexamethasone. 0%, 2-fold, and 3-fold inhibition and 1.5-fold increase in levels are highlighted by dotted lines on the y-axis. Zero relative expression is in the absence of dexamethasone. Data points show average fold change compared to baseline and SD error bars. Data are technical replicates with an underlying n=1.
Figure 3
Figure 3
Imaging (A) and ACTH and cortisol levels (B) for case 1: a 46-year-old woman with an ectopic ACTH-secreting tumor (ectopic Cushing syndrome) treated with relacorilant for 16 weeks. (A) Octreotide scintigraphy. Increased uptake on post treatment imaging was consistent with increased expression of SSTR2s following treatment with relacorilant. (B) ACTH and cortisol levels before (baseline) and during relacorilant treatment. Normal laboratory ranges: ACTH, 6.0-50 pg/mL; serum cortisol, 4.6-20.6 µg/dL. To convert ACTH values from pg/mL to pmol/L, multiply by 0.22. To convert serum cortisol from µg/dL to nmol/L, multiply by 27.6. ACTH, adrenocorticotropic hormone.
Figure 4
Figure 4
ACTH and serum cortisol levels (A) and 68Ga-DOTATATE scans (B–E) in case 2: a 68-year-old man with a metastatic carcinoid NET treated with 7 cycles of relacorilant + nab-paclitaxel. (A) ACTH and cortisol levels before (baseline) and during relacorilant + nab-paclitaxel treatment. Patient received concomitant somatostatin analog. Normal laboratory ranges: ACTH, 6-50 pg/mL; morning serum cortisol, 4.6-20.6 µg/dL. To convert ACTH values from pg/mL to pmol/L, multiply by 0.22. To convert serum cortisol from µg/dL to nmol/L, multiply by 27.6. (B)68Ga-DOTATATE scan showed multiple lung and bone lesions at baseline before treatment with relacorilant. Repeat scan during treatment with relacorilant showed increased uptake without change in size of the lesions on CT. (C)68Ga DOTATATE scan showed multiple lung, liver, and bone lesions at baseline before treatment with relacorilant. Repeat scan during treatment with relacorilant showed increased uptake. (D)68Ga DOTATATE scan of L5 and left iliac bone lesions at baseline. Repeat scan during treatment with relacorilant showed increased uptake. (E) Compared with the 68Ga-DOTATATE scan before treatment with relacorilant, the repeat scan during relacorilant treatment showed increased uptake at the pituitary gland. ACTH, adrenocorticotropic hormone; NA, not available.
Figure 5
Figure 5
MRI of pituitary macroadenomas (A) and ACTH and cortisol levels (B) in case 3: a 50-year-old woman with Cushing disease treated with relacorilant for 12 weeks. (A) Coronal post contrast T1-weighted MRI obtained at diagnosis (left image) after administration of gadolinium showed a nodular lesion with reduced enhancement in the median and paramedian anterior part of the sellar region compatible with pituitary macroadenoma. It measured 10.01 × 6.29 × 4.91 mm. Pituitary MRI obtained (right image) within 12 weeks after the last dose of relacorilant showed a reduction in the size of the macroadenoma (8.04 × 5.70 × 3.65 mm). (B) ACTH and cortisol levels. Normal laboratory ranges: ACTH, 6.0-50 pg/mL; serum cortisol, 4.6-20.6 µg/dL. To convert ACTH values from pg/mL to pmol/L, multiply by 0.22. To convert serum cortisol from µg/dL to nmol/L, multiply by 27.6. ACTH, adrenocorticotropic hormone.
Figure 6
Figure 6
MRI of pituitary macroadenomas (A) and ACTH and cortisol levels (B) in case 4: a 43-year-old man with Cushing disease treated with relacorilant for 12 weeks. (A) Coronal post contrast T1-weighted MRI obtained at diagnosis (left image) after administration of gadolinium showed a pituitary macroadenoma measuring 22 × 25 × 26 mm with suprasellar extension, right displacement of the pituitary stalk, and invasion of the left cavernous sinus. The tumor was isointense to the gray matter and slightly inhomogeneous for the presence of cystic changes in its lower aspect. MRI of the hypophysis obtained within 12 weeks after the last dose of relacorilant (right image), after treatment with relacorilant, showed a reduction in the size of the macroadenoma (21 × 22 × 19 mm). (B) ACTH and cortisol levels. Normal laboratory ranges: ACTH, 6.0-50 pg/mL; serum cortisol, 4.6-20.6 µg/dL. To convert ACTH values from pg/mL to pmol/L, multiply by 0.22. To convert serum cortisol from µg/dL to nmol/L, multiply by 27.6. ACTH, adrenocorticotropic hormone.

References

    1. Hofland LJ, Lamberts SW, Feelders RA. Role of Somatostatin Receptors in Normal and Tumoral Pituitary Corticotropic Cells. Neuroendocrinology (2010) 92:11–6. doi: 10.1159/000314296
    1. Cakir M, Dworakowska D, Grossman A. Somatostatin Receptor Biology in Neuroendocrine and Pituitary Tumours: Part 1 – Molecular Pathways. J Cell Mol Med (2010) 14:2570–84. doi: 10.1111/j.1582-4934.2010.01125.x
    1. Theodoropoulou M, Stalla GK. Somatostatin Receptors: From Signaling to Clinical Practice. Front Neuroendocrinol (2013) 34:228–52. doi: 10.1016/j.yfrne.2013.07.005
    1. Ampofo E, Nalbach L, Menger MD, Laschke MW. Regulatory Mechanisms of Somatostatin Expression. Int J Mol Sci (2020) 21:4170. doi: 10.3390/ijms21114170
    1. Mizutani G, Nakanishi Y, Watanabe N, Honma T, Obana Y, Seki T, et al. . Expression of Somatostatin Receptor (SSTR) Subtypes (SSTR-1, 2a, 3, 4 and 5) in Neuroendocrine Tumors Using Real-Time RT-PCR Method and Immunohistochemistry. Acta Histochem Cytochem (2012) 45:167–76. doi: 10.1267/ahc.12006
    1. Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin Receptor Sst1-Sst5 Expression in Normal and Neoplastic Human Tissues Using Receptor Autoradiography With Subtype-Selective Ligands. Eur J Nucl Med (2001) 28:836–46. doi: 10.1007/s002590100541
    1. Albertelli M, Arvigo M, Boschetti M, Ferone D, Gatto F, Minuto F. Somatostatin Receptor Pathophysiology in the Neuroendocrine System. Expert Rev Endocrinol Metab (2013) 8:149–57. doi: 10.1586/eem.13.7
    1. Shimon I, Taylor JE, Dong JZ, Bitonte RA, Kim S, Morgan B, et al. . Somatostatin Receptor Subtype Specificity in Human Fetal Pituitary Cultures. Differential Role of SSTR2 and SSTR5 for Growth Hormone, Thyroid-Stimulating Hormone, and Prolactin Regulation. J Clin Invest (1997) 99:789–98. doi: 10.1172/jci119225
    1. Fisher GA, Jr., Wolin EM, Liyanage N, Pitman Lowenthal S, Mirakhur B, Pommier RF, et al. . Patient-Reported Symptom Control of Diarrhea and Flushing in Patients With Neuroendocrine Tumors Treated With Lanreotide Depot/Autogel: Results From a Randomized, Placebo-Controlled, Double-Blind and 32-Week Open-Label Study. Oncologist (2018) 23:16–24. doi: 10.1634/theoncologist.2017-0284
    1. Gatto F, Barbieri F, Arvigo M, Thellung S, Amarù J, Albertelli M, et al. . Biological and Biochemical Basis of the Differential Efficacy of First and Second Generation Somatostatin Receptor Ligands in Neuroendocrine Neoplasms. Int J Mol Sci (2019) 20:3940. doi: 10.3390/ijms20163940
    1. Caplin ME, Pavel M, Cwikla JB, Phan AT, Raderer M, Sedlackova E, et al. . Lanreotide in Metastatic Enteropancreatic Neuroendocrine Tumors. N Engl J Med (2014) 371:224–33. doi: 10.1056/NEJMoa1316158
    1. Rinke A, Müller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, et al. . Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients With Metastatic Neuroendocrine Midgut Tumors: A Report From the PROMID Study Group. J Clin Oncol (2009) 27:4656–63. doi: 10.1200/jco.2009.22.8510
    1. Vinik AI, Woltering EA, Warner RR, Caplin M, O'Dorisio TM, Wiseman GA, et al. . NANETS Consensus Guidelines for the Diagnosis of Neuroendocrine Tumor. Pancreas (2010) 39:713–34. doi: 10.1097/MPA.0b013e3181ebaffd
    1. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. . Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med (2017) 376:125–35. doi: 10.1056/NEJMoa1607427
    1. Isidori AM, Sbardella E, Zatelli MC, Boschetti M, Vitale G, Colao A, et al. . Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review. J Clin Endocrinol Metab (2015) 100:3231–44. doi: 10.1210/jc.2015-1589
    1. Lamberts SW, Zuyderwijk J, den Holder F, van Koetsveld P, Hofland L. Studies on the Conditions Determining the Inhibitory Effect of Somatostatin on Adrenocorticotropin, Prolactin and Thyrotropin Release by Cultured Rat Pituitary Cells. Neuroendocrinology (1989) 50:44–50. doi: 10.1159/000125200
    1. Uwaifo GI, Koch CA, Hirshberg B, Chen CC, Hartzband P, Nieman LK, et al. . Is There a Therapeutic Role for Octreotide in Patients With Ectopic Cushing's Syndrome? J Endocrinol Invest (2003) 26:710–7. doi: 10.1007/bf03347351
    1. Stalla GK, Brockmeier SJ, Renner U, Newton C, Buchfelder M, Stalla J, et al. . Octreotide Exerts Different Effects In Vivo and In Vitro in Cushing's Disease. Eur J Endocrinol (1994) 130:125–31. doi: 10.1530/eje.0.1300125
    1. Pivonello R, Ferone D, de Herder WW, Kros JM, De Caro ML, Arvigo M, et al. . Dopamine Receptor Expression and Function in Corticotroph Pituitary Tumors. J Clin Endocrinol Metab (2004) 89:2452–62. doi: 10.1210/jc.2003-030837
    1. de Bruin C, Pereira AM, Feelders RA, Romijn JA, Roelfsema F, Sprij-Mooij DM, et al. . Coexpression of Dopamine and Somatostatin Receptor Subtypes in Corticotroph Adenomas. J Clin Endocrinol Metab (2009) 94:1118–24. doi: 10.1210/jc.2008-2101
    1. Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, et al. . Treatment of Cushing's Syndrome: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab (2015) 100:2807–31. doi: 10.1210/jc.2015-1818
    1. Pivonello R, De Leo M, Cozzolino A, Colao A. The Treatment of Cushing's Disease. Endocr Rev (2015) 36:385–486. doi: 10.1210/er.2013-1048
    1. van der Hoek J, Waaijers M, van Koetsveld PM, Sprij-Mooij D, Feelders RA, Schmid HA, et al. . Distinct Functional Properties of Native Somatostatin Receptor Subtype 5 Compared With Subtype 2 in the Regulation of ACTH Release by Corticotroph Tumor Cells. Am J Physiol Endocrinol Metab (2005) 289:E278–87. doi: 10.1152/ajpendo.00004.2005
    1. de Bruin C, Hofland LJ, Nieman LK, van Koetsveld PM, Waaijers AM, Sprij-Mooij DM, et al. . Mifepristone Effects on Tumor Somatostatin Receptor Expression in Two Patients With Cushing's Syndrome Due to Ectopic Adrenocorticotropin Secretion. J Clin Endocrinol Metab (2012) 97:455–62. doi: 10.1210/jc.2011-1264
    1. Ray DW, Littlewood AC, Clark AJ, Davis JR, White A. Human Small Cell Lung Cancer Cell Lines Expressing the Proopiomelanocortin Gene Have Aberrant Glucocorticoid Receptor Function. J Clin Invest (1994) 93:1625–30. doi: 10.1172/jci117143
    1. Gaitan D, DeBold CR, Turney MK, Zhou P, Orth DN, Kovacs WJ. Glucocorticoid Receptor Structure and Function in an Adrenocorticotropin-Secreting Small Cell Lung Cancer. Mol Endocrinol (1995) 9:1193–201. doi: 10.1210/mend.9.9.7491111
    1. de Bruin C, Feelders RA, Waaijers AM, van Koetsveld PM, Sprij-Mooij DM, Lamberts SW, et al. . Differential Regulation of Human Dopamine D2 and Somatostatin Receptor Subtype Expression by Glucocorticoids. Vitro J Mol Endocrinol (2009) 42:47–56. doi: 10.1677/jme-08-0110
    1. Fleseriu M, Biller BM, Findling JW, Molitch ME, Schteingart DE, Gross C. Mifepristone, a Glucocorticoid Receptor Antagonist, Produces Clinical and Metabolic Benefits in Patients With Cushing's Syndrome. J Clin Endocrinol Metab (2012) 97:2039–49. doi: 10.1210/jc.2011-3350
    1. Fleseriu M, Findling JW, Koch CA, Schlaffer S-M, Buchfelder M, Gross C. Changes in Plasma ACTH Levels and Corticotroph Tumor Size in Patients With Cushing's Disease During Long-Term Treatment With the Glucocorticoid Receptor Antagonist Mifepristone. J Clin Endocrinol Metab (2014) 99:3718–27. doi: 10.1210/jc.2014-1843
    1. Hunt HJ, Belanoff JK, Walters I, Gourdet B, Thomas J, Barton N, et al. . Identification of the Clinical Candidate (R)-(1-(4-Fluorophenyl)-6-((1-Methyl-1H-Pyrazol-4-Yl)Sulfonyl)-4,4a,5,6,7,8-Hexahydro-1H-Pyrazolo[3,4-G]Isoquinolin-4a-Yl)(4-(Trifluoromethyl)Pyridin-2-Yl)Methanone (CORT125134): A Selective Glucocorticoid Receptor (GR) Antagonist. J Med Chem (2017) 60:3405–21. doi: 10.1021/acs.jmedchem.7b00162
    1. Patel YC, Greenwood M, Kent G, Panetta R, Srikant CB. Multiple Gene Transcripts of the Somatostatin Receptor SSTR2: Tissue Selective Distribution and cAMP Regulation. Biochem Biophys Res Commun (1993) 192:288–94. doi: 10.1006/bbrc.1993.1412
    1. Ferone D, Gatto F, Arvigo M, Resmini E, Boschetti M, Teti C, et al. . The Clinical-Molecular Interface of Somatostatin, Dopamine and Their Receptors in Pituitary Pathophysiology. J Mol Endocrinol (2009) 42:361–70. doi: 10.1677/jme-08-0162
    1. Deppen SA, Liu E, Blume JD, Clanton J, Shi C, Jones-Jackson LB, et al. . Safety and Efficacy of 68Ga-DOTATATE PET/CT for Diagnosis, Staging, and Treatment Management of Neuroendocrine Tumors. J Nucl Med (2016) 57:708–14. doi: 10.2967/jnumed.115.163865
    1. Ceccato F, Cecchin D, Gregianin M, Ricci G, Campi C, Crimì F, et al. . The Role of 68Ga-DOTA Derivatives PET-CT in Patients With Ectopic ACTH Syndrome. Endocr Connect (2020) 9:337–45. doi: 10.1530/ec-20-0089
    1. Pivonello R, Bancos I, Feelders RA, Kargi AY, Kerr JM, Gordon MB, et al. . Relacorilant, a Selective Glucocorticoid Receptor Modulator, Induces Clinical Improvements in Patients With Cushing Syndrome: Results From a Prospective, Open-Label Phase 2 Study. Front Endocrinol (Lausanne) (2021) 12:662865. doi: 10.3389/fendo.2021.662865
    1. Volpi R, Chiodera P, Capretti L, Caiazza A, Caffarri G, Magotti MG, et al. . Inhibition by Somatostatin of the Growth Hormone, But Not Corticotropin Response to Angiotensin II in Normal Men. Horm Res (1996) 45:269–72. doi: 10.1159/000184804
    1. Tyrrell JB, Lorenzi M, Gerich JE, Forsham PH. Inhibition by Somatostatin of ACTH Secretion in Nelson's Syndrome. J Clin Endocrinol Metab (1975) 40:1125–7. doi: 10.1210/jcem-40-6-1125
    1. Fehm HL, Voigt KH, Lang R, Beinert KE, Raptis S, Pfeiffer EF. Somatostatin: A Potent Inhibitor of ACTH-Hypersecretion in Adrenal Insufficiency. Klin Wochenschr (1976) 54:173–5. doi: 10.1007/bf01468882
    1. La Rosa S, Volante M, Uccella S, Maragliano R, Rapa I, Rotolo N, et al. . ACTH-Producing Tumorlets and Carcinoids of the Lung: Clinico-Pathologic Study of 63 Cases and Review of the Literature. Virchows Arch (2019) 475:587–97. doi: 10.1007/s00428-019-02612-x
    1. Ferrau F, Trimarchi F, Cannavo S. Adrenocorticotropin Responsiveness to Acute Octreotide Administration Is Not Affected by Mifepristone Premedication in Patients With Cushing's Disease. Endocrine (2014) 47:550–6. doi: 10.1007/s12020-013-0163-0
    1. Qian ZR, Li T, Ter-Minassian M, Yang J, Chan JA, Brais LK, et al. . Association Between Somatostatin Receptor Expression and Clinical Outcomes in Neuroendocrine Tumors. Pancreas (2016) 45:1386–93. doi: 10.1097/mpa.0000000000000700
    1. Colao A, Auriemma RS, Pivonello R, Kasuki L, Gadelha MR. Interpreting Biochemical Control Response Rates With First-Generation Somatostatin Analogues in Acromegaly. Pituitary (2016) 19:235–47. doi: 10.1007/s11102-015-0684-z
    1. Jaafar AS, Mohd Shokri SS, Paramasvaran S, Palaniandy K, Fadzil F. Now You See, Now You Don't: A Case of Spontaneous Regression of Pituitary Tumour. Cureus (2020) 12:e9174. doi: 10.7759/cureus.9174
    1. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. . The Diagnosis of Cushing's Syndrome: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab (2008) 93:1526–40. doi: 10.1210/jc.2008-0125
    1. Bali U, Phillips T, Hunt H, Unitt J. FKBP5 mRmRNA Expression Is a Biomarker for GR Antagonior GR Antagonism. J Clin Endocrinol Metab (2016) 101:4305–12. doi: 10.1210/jc.2016-1624

Source: PubMed

3
S'abonner