이 페이지는 자동 번역되었으며 번역의 정확성을 보장하지 않습니다. 참조하십시오 영문판 원본 텍스트의 경우.

Stroke Gait Rehabilitation Using Functional Electrical Stimulation

2021년 2월 17일 업데이트: Trisha Kesar, PT, PhD, Emory University

Cortical and Spinal Correlates of Post-stroke Gait Rehabilitation

The study is a prospective interventional study to assess the changes in corticospinal excitability and spinal reflex excitability of in response to rehabilitative strategies and protocols that are commonly used during physical therapy treatment of gait disorders among post-stroke subjects. As part of this protocol, 55 individuals with chronic stroke will be assigned to either Cohort 1 or Cohort 2, and will participate in 1-18 gait training sessions. If interested, study participants can also complete both study cohorts sequentially (with at least 3-weeks duration between switching from one cohort to the second). The study examines the effects among two cohorts of post stroke patients. Cohort 1 will participate in 18 sessions of fast treadmill walking plus Functional Electrical Stimulation (FastFES) and Cohort 2 will participate in 1-3 sessions of FastFES and fast walking without FES.

연구 개요

상세 설명

Stroke is the number one cause of disability. Difficulty with walking affects most stroke survivors. Walking deficits (e.g. reduced ankle flexion during swing phase, decreased forward propulsion during terminal stance) can cause risks of falls, slow walking speed, increased effort of walking, and difficulties with activities of daily living. Restoration of walking ability can improve quality of life, and is perceived as a major goal of rehabilitation by stroke survivors. Examples of interventions that are used to rehabilitate walking post-stroke are functional electrical stimulation, fast treadmill walking, and bio- feedback. While recent research has focused on comparing the effectiveness of different gait rehabilitation interventions, the neural and biomechanical mechanisms underlying different gait rehabilitation strategies are unknown. FastFES is a novel gait training intervention that combines the beneficial effects of two independent interventions: Fast treadmill walking and FES. The FastFES intervention incorporates principles of physiology, biomechanics, motor control and learning, and predictions of forward-dynamic gait simulations to improve post-stroke gait.

The overall purpose of this protocol is to assess the biomechanical and neurophysiologic effects of rehabilitative strategies and protocols that are commonly used during physical therapy treatment of gait disorders post-stroke among two cohorts of people. Aim 1 of the study will assess the changes in gait biomechanics, corticospinal excitability, and walking function during 18 sessions of gait retraining, with participants in Cohort 1. Aim 2 of the study assesses the effect of parameters such as walking speed (slow, fast, variable, split-belt walking), functional electrical stimulation parameters (short-term changes induced by fast versus FastFES, stimulation intensity, number of muscles stimulated), and bio-feedback on within-session changes in gait biomechanics, walking function, and corticospinal excitability, among participants in Cohort 2.

Within Cohort 1, participants will receive identical treatment throughout the 18 training sessions (i.e. FastFES training). Within Cohort 2, participants will participate in 3 training sessions of both FastFES and fast walking training, with a 3-week break between the two types of training.

연구 유형

중재적

등록 (실제)

24

단계

  • 해당 없음

연락처 및 위치

이 섹션에서는 연구를 수행하는 사람들의 연락처 정보와 이 연구가 수행되는 장소에 대한 정보를 제공합니다.

연구 장소

    • Georgia
      • Atlanta, Georgia, 미국, 30322
        • Emory University

참여기준

연구원은 적격성 기준이라는 특정 설명에 맞는 사람을 찾습니다. 이러한 기준의 몇 가지 예는 개인의 일반적인 건강 상태 또는 이전 치료입니다.

자격 기준

공부할 수 있는 나이

30년 (성인, 고령자)

건강한 자원 봉사자를 받아들입니다

아니

연구 대상 성별

모두

설명

Inclusion Criteria:

  • Chronic stroke (>6 months post stroke)
  • First (single) lesion
  • Able to walk with or without the use of a cane or walker
  • Sufficient cardiovascular health and ankle stability to walk for 6 minutes at a self-selected speed without an orthoses
  • Resting heart rate 40-100 beats per minute
  • Resting blood pressure between 90/60-70/90

Exclusion Criteria:

  • Evidence of moderate/ severe chronic white matter disease or cerebellar stroke on MRI
  • Cerebellar signs (ataxic ("drunken") gait or decreased coordination during rapid alternating hand or foot movements
  • Insulin dependent diabetes
  • History of lower extremity joint replacement
  • Score of >1 on question 1b and >0 on question 1c on NIH Stroke Scale
  • Inability to communicate with investigators
  • Neglect/hemianopia, or unexplained dizziness in last 6 months
  • Neurologic conditions other than stroke
  • Orthopedic problems in the lower limbs or spine (or other medical conditions) that limit walking
  • Contraindications to transcranial magnetic stimulation (TMS) are: history of seizures, metal implants in the head or face, history of recurring or severe headaches/migraine, headache within the past 24 hours, presence of skull abnormalities or fractures, hemorrhagic stroke, history of dizziness, syncope, nausea, or loss of consciousness in the past 12 months

공부 계획

이 섹션에서는 연구 설계 방법과 연구가 측정하는 내용을 포함하여 연구 계획에 대한 세부 정보를 제공합니다.

연구는 어떻게 설계됩니까?

디자인 세부사항

  • 주 목적: 다른
  • 할당: 무작위화되지 않음
  • 중재 모델: 병렬 할당
  • 마스킹: 없음(오픈 라벨)

무기와 개입

참가자 그룹 / 팔
개입 / 치료
실험적: Cohort 1 - FastFES Training
Participants with chronic stroke in Cohort 1 will receive 18 training sessions of FastFES (fast treadmill walking with electrical stimulation).
Functional electrical stimulation (FES) is a technique that causes a muscle to contract through the use of an electrical current. The therapist applies an electrical current to either the skin over the nerve, or over the bulk of the muscle, and this will cause a muscle contraction. The FES is delivered to 2 muscle groups (dorsiflexor and plantarflexor) timed appropriately with the gait cycle. FastFES gait training sessions may comprise up to six 6-minute bouts of walking with rest breaks between bouts (total 30-minutes of walking). The last training bout (bout 6) may comprise 6-minutes of over ground walking, during which subjects will be asked to walk as fast as they can. For safety, a physical therapist will walk with and guard the subject during over ground walking.
다른 이름들:
  • FastFES
실험적: Cohort 2 - FastFES and Fast Walking
Participants with chronic stroke in Cohort 2 who complete 3 sessions of FastFES and 3 sessions of fast walking.
Functional electrical stimulation (FES) is a technique that causes a muscle to contract through the use of an electrical current. The therapist applies an electrical current to either the skin over the nerve, or over the bulk of the muscle, and this will cause a muscle contraction. The FES is delivered to 2 muscle groups (dorsiflexor and plantarflexor) timed appropriately with the gait cycle. FastFES gait training sessions may comprise up to six 6-minute bouts of walking with rest breaks between bouts (total 30-minutes of walking). The last training bout (bout 6) may comprise 6-minutes of over ground walking, during which subjects will be asked to walk as fast as they can. For safety, a physical therapist will walk with and guard the subject during over ground walking.
다른 이름들:
  • FastFES
Fast walking training sessions will be similar to FastFES in duration, dosage, structure but no FES will be provided.

연구는 무엇을 측정합니까?

주요 결과 측정

결과 측정
측정값 설명
기간
Change in Motor Evoked Potentials (MEP) Amplitude Measure in milliVolt (mV) of FastFES Versus Fast Walking After 3 Training Sessions in Cohort 2
기간: Baseline, week 3 (after 3 sessions of one intervention), week 6 (after 3 sessions of the other intervention)
Change from baseline in MEP amplitude (transverse abdominal (TA) muscle) is used as a measure of corticospinal excitability that is assessed using a non-invasive technique called transcranial magnetic stimulation (TMS). Electrical activity from muscles in response to the TMS will be collected using surface electromyography (EMG) sensors attached to muscles that play critical roles during FastFES versus Fast walking. TMS will be delivered using two Magstim 200 stimulators connected via a BiStim module. An average of 10 TMS-evoked MEP responses will be used to comparing mean peak-to-peak MEP amplitudes in response to suprathreshold TMS delivered to the hotspot.
Baseline, week 3 (after 3 sessions of one intervention), week 6 (after 3 sessions of the other intervention)
Change in H-Reflex /M-Wave (Hmax/Mmax) Ratio Among FastFES Versus Fast Walking After 3 Training Sessions in Cohort 2
기간: Baseline, week 3 (after 3 sessions of one intervention), week 6 (after 3 sessions of the other intervention)
Change from baseline in (Hmax/Mmax) ratio is used as a measure of spinal reflex excitability, that is assessed using peripheral electrical stimulation delivered to the nerves innervating the ankle muscles. An electrical stimulation electrode is placed just above the knee, and used as the anode for tibial nerve stimulation. Electrical stimulation is delivered via surface electrodes in a static position to the popliteal fossa. The subject's EMG activity will be recorded while the cathode is moved at the back of the knee to determine the location that provides the best EMG response (H-reflex). EMG activity will be recorded while 50-60 electrical stimuli (short 1 ms square pulses, ranging in intensity in milliAmpere(mA) 1-80), 7-10 seconds apart, are delivered to the muscle. Also 5-20 electrical stimulus pulses at intensities are delivered that elicit a percentage of the maximum reflex response.
Baseline, week 3 (after 3 sessions of one intervention), week 6 (after 3 sessions of the other intervention)
Change in Motor Evoked Potentials (MEP) Amplitude Measure in milliVolt (mV) of FastFES After 18 Training Sessions in Cohort 1
기간: Baseline and up to 6 weeks
Change from baseline in MEP amplitude (TA muscle in a resting state) is used as a measure of corticospinal excitability that is assessed using a non-invasive technique called transcranial magnetic stimulation (TMS). Electrical activity from muscles in response to the TMS will be collected using surface electromyography (EMG) sensors attached to muscles that play critical roles during FastFES versus Fast walking. TMS will be delivered using two Magstim 200 stimulators connected via a BiStim module. An average of 10 TMS-evoked MEP responses will be used to comparing mean peak-to-peak MEP amplitudes in response to suprathreshold TMS delivered to the hotspot.
Baseline and up to 6 weeks
Change in H-Reflex /M-Wave (Hmax/Mmax) Ratio Among FastFES Versus Fast Walking After 18 Training Sessions in Cohort 1
기간: Baseline and up to 6 weeks
Change from baseline in (Hmax/Mmax) ratio is used as a measure of spinal reflex excitability, that is assessed using peripheral electrical stimulation delivered to the nerves innervating the ankle muscles. An electrical stimulation electrode is placed just above the knee, and used as the anode for tibial nerve stimulation. Electrical stimulation is delivered via surface electrodes in a static position to the popliteal fossa. The subject's EMG activity will be recorded while the cathode is moved at the back of the knee to determine the location that provides the best EMG response (H-reflex). EMG activity will be recorded while 50-60 electrical stimuli (short 1 ms square pulses, ranging in intensity in milliAmpere(mA) 1-80), 7-10 seconds apart, are delivered to the muscle. Also 5-20 electrical stimulus pulses at intensities are delivered that elicit a percentage of the maximum reflex response.
Baseline and up to 6 weeks

2차 결과 측정

결과 측정
측정값 설명
기간
Change in Peak Anterior Ground Reaction Force (AGRF) of FastFES Versus Fast Walking After 3 Training Sessions in Cohort 2
기간: Baseline, week 3 (after 3 sessions of one intervention), week 6 (after 3 sessions of the other intervention)
Change from baseline in peak AGRF during treadmill walking will be collected using a treadmill instrumented with two force platforms under each belt. Motion analysis data will be collected during 15- to 40-second long dynamic walking trials as subjects walk on a treadmill.
Baseline, week 3 (after 3 sessions of one intervention), week 6 (after 3 sessions of the other intervention)
Change in Peak Anterior Ground Reaction Force (AGRF) of FastFES Versus Fast Walking After 18 Training Sessions in Cohort 1
기간: Baseline and up to 6 weeks
Change from baseline in peak AGRF during treadmill walking will be collected using a treadmill instrumented with two force platforms under each belt. Motion analysis data will be collected during 15- to 40-second long dynamic walking trials as subjects walk on a treadmill.
Baseline and up to 6 weeks

공동 작업자 및 조사자

여기에서 이 연구와 관련된 사람과 조직을 찾을 수 있습니다.

스폰서

수사관

  • 수석 연구원: Trisha Kesar, PT, PhD, Emory University

간행물 및 유용한 링크

연구에 대한 정보 입력을 담당하는 사람이 자발적으로 이러한 간행물을 제공합니다. 이것은 연구와 관련된 모든 것에 관한 것일 수 있습니다.

연구 기록 날짜

이 날짜는 ClinicalTrials.gov에 대한 연구 기록 및 요약 결과 제출의 진행 상황을 추적합니다. 연구 기록 및 보고된 결과는 공개 웹사이트에 게시되기 전에 특정 품질 관리 기준을 충족하는지 확인하기 위해 국립 의학 도서관(NLM)에서 검토합니다.

연구 주요 날짜

연구 시작 (실제)

2013년 8월 1일

기본 완료 (실제)

2019년 5월 1일

연구 완료 (실제)

2019년 5월 1일

연구 등록 날짜

최초 제출

2012년 8월 15일

QC 기준을 충족하는 최초 제출

2012년 8월 16일

처음 게시됨 (추정)

2012년 8월 20일

연구 기록 업데이트

마지막 업데이트 게시됨 (실제)

2021년 3월 10일

QC 기준을 충족하는 마지막 업데이트 제출

2021년 2월 17일

마지막으로 확인됨

2021년 2월 1일

추가 정보

이 연구와 관련된 용어

기타 연구 ID 번호

  • IRB00058363
  • 5K01HD079584-02 (미국 NIH 보조금/계약)
  • 13SDG13320000 (기타 식별자: American Heart Association)

개별 참가자 데이터(IPD) 계획

개별 참가자 데이터(IPD)를 공유할 계획입니까?

아니요

약물 및 장치 정보, 연구 문서

미국 FDA 규제 의약품 연구

아니

미국 FDA 규제 기기 제품 연구

미국에서 제조되어 미국에서 수출되는 제품

이 정보는 변경 없이 clinicaltrials.gov 웹사이트에서 직접 가져온 것입니다. 귀하의 연구 세부 정보를 변경, 제거 또는 업데이트하도록 요청하는 경우 register@clinicaltrials.gov. 문의하십시오. 변경 사항이 clinicaltrials.gov에 구현되는 즉시 저희 웹사이트에도 자동으로 업데이트됩니다. .

3
구독하다