이 페이지는 자동 번역되었으며 번역의 정확성을 보장하지 않습니다. 참조하십시오 영문판 원본 텍스트의 경우.

HFLVV for Hypoxemia in Robot-assisted Cardiac Surgery

The High-frequency Low-volume Ventilation (HFLVV) for Hypoxemia During the Weaning From Cardiopulmonary Bypass in Robot-assisted Cardiac Surgery

These robot-assisted cardiac surgeries usually require single-lung ventilation (SLV) to facilitate surgical exposure. SLV creates ventilation/perfusion mismatch and shunt (Qs:Qt) through the collapsed lung and leads to hypoxemia. Pulmonary gas exchange often deteriorates after cardiopulmonary bypass (CPB) because of ischemic tissue damage. In some cases, severe hypoxemia may require the cessation of surgical procedures and the initiation of double-lung ventilation to improve oxygenation. In this study, the investigator applied the continuous positive airway pressure (CPAP) or the high-frequency low-volume ventilation (HFLVV) to the non-dependent lung (differential ventilation) during the weaning from CPB. The investigator hypothesized that the differential ventilation would produce the least interference with the surgeon's exposure and better oxygenation. The investigators evaluate the airway pressure, shunt fraction, PaO2/FiO2, cerebral oximetry, surgical field condition and the length of stay in intensive care unit of patients underwent the robot-assisted cardiac surgery.

연구 개요

연구 유형

중재적

등록 (예상)

56

단계

  • 해당 없음

연락처 및 위치

이 섹션에서는 연구를 수행하는 사람들의 연락처 정보와 이 연구가 수행되는 장소에 대한 정보를 제공합니다.

연구 장소

    • Chongqing
      • Chongqing, Chongqing, 중국, 400042
        • Daping Hospital, Army Medical University

참여기준

연구원은 적격성 기준이라는 특정 설명에 맞는 사람을 찾습니다. 이러한 기준의 몇 가지 예는 개인의 일반적인 건강 상태 또는 이전 치료입니다.

자격 기준

공부할 수 있는 나이

18년 (성인, 고령자)

건강한 자원 봉사자를 받아들입니다

아니

연구 대상 성별

모두

설명

Inclusion Criteria:

  • scheduled for robot-assisted cardiac surgery with cardiopulmonary bypass

Exclusion Criteria:

  • age <18 or > 70 years
  • PaO2/FiO2 ratio < 300 mmHg before anesthesia induction
  • American Society of Anesthesiologist (ASA) Grade > 3
  • Patients who were converted to conventional open-chest procedure

공부 계획

이 섹션에서는 연구 설계 방법과 연구가 측정하는 내용을 포함하여 연구 계획에 대한 세부 정보를 제공합니다.

연구는 어떻게 설계됩니까?

디자인 세부사항

  • 주 목적: 방지
  • 할당: 무작위
  • 중재 모델: 병렬 할당
  • 마스킹: 하나의

무기와 개입

참가자 그룹 / 팔
개입 / 치료
가짜 비교기: Conventional ventilation group
Conventional SLV and complementary with DLV when necessary. When SLV was initiated, the patient was ventilated with left lung. FiO2 of 1.0, tidal volume of 6ml/kg, respiratory rate of 16-24 bpm, PEEP of 5-10 cmH2O. The right lung was totally collapsed. If the SpO2 decreased lower than 90%, DLV was started and the operation was paused until the SpO2 increased to 100%. Then the operation was restarted.
When the hypoxemia occurs during sing lung ventilation in robot-assisted cardiac surgery, the non-dependent lung will be ventilated with normal tidal volume in conventional ways and the surgery procedure have to be ceased. In this trial, the non-dependent lung will be ventilated with the continuous positive airway pressure (CPAP) or the high-frequency low-volume ventilation (HFLVV) to prevent the hypoxemia.
활성 비교기: CPAP group

SLV of left lung and CPAP of right lung, and complementary with DLV when necessary.

When SLV was initiated, the patient was ventilated with left lung. FiO2 of 1.0, tidal volume of 6ml/kg, respiratory rate of 16-24 bpm, PEEP of 5-10 cmH2O. After the right lung was totally collapsed, CPAP was started with the pressure less than 8 cmH2O. If SpO2 decreased lower than 90%, DLV was started and the operation was paused until the SpO2 increased to 100%. Then the operation was restarted.

When the hypoxemia occurs during sing lung ventilation in robot-assisted cardiac surgery, the non-dependent lung will be ventilated with normal tidal volume in conventional ways and the surgery procedure have to be ceased. In this trial, the non-dependent lung will be ventilated with the continuous positive airway pressure (CPAP) or the high-frequency low-volume ventilation (HFLVV) to prevent the hypoxemia.
실험적: HFLVV group

SLV of left lung and HFLVV of right lung, and complementary with DLV when necessary.

When SLV was initiated, the patient was ventilated with left lung. FiO2 of 1.0, tidal volume of 6ml/kg, respiratory rate of 16-24 bpm, PEEP of 5-10 cmH2O. After the right lung was totally collapsed, HFLVV was started with tidal volume of 2ml/kg, respiratory rate of 60 bpm. If SpO2 decreased lower than 90%, DLV was started and the operation was paused until the SpO2 increased to 100%. Then the operation was restarted.

When the hypoxemia occurs during sing lung ventilation in robot-assisted cardiac surgery, the non-dependent lung will be ventilated with normal tidal volume in conventional ways and the surgery procedure have to be ceased. In this trial, the non-dependent lung will be ventilated with the continuous positive airway pressure (CPAP) or the high-frequency low-volume ventilation (HFLVV) to prevent the hypoxemia.

연구는 무엇을 측정합니까?

주요 결과 측정

결과 측정
측정값 설명
기간
Changes of arterial PaO2
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Arterial PaO2 (in mmHg) defined as a measurement of partial pressure of oxygen in arterial blood
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Changes of PaO2/FiO2 ratio
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
PaO2/FiO2 ratio defined as the ratio of PaO2 to fractional inspired oxygen (FiO2 expressed as a fraction)
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]

2차 결과 측정

결과 측정
측정값 설명
기간
Changes of Heart rate
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV
Heart rate in beat per minute
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV
Changes of mean blood pressure
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
mean blood pressure in mmHg
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Changes of cardiac stroke volume variation
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Cardiac stroke volume variation in percentages
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Changes of venous pressure of jugular vein
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Venous pressure of jugular vein in cmH2O
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Changes of tidal volume
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Tidal volume of both lungs in milliliter
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Changes of respiratory rates
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Respiratory rates of both lungs in breath per minute
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Changes of airway pressure
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Airway pressure of both lungs in mmHg
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Changes of end-tidal carbon dioxide tension
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
End-tidal carbon dioxide tension in mmHg
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Changes of blood oxygen saturation
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Blood oxygen saturation of both upper and lower extremities in percentages
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Changes of the pulmonary shunt fraction
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Qs/Qt = ((CcO2 - CaO2) / (CcO2 - CvO2)) * 100
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Changes of regional cerebral oxygen saturation
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
regional cerebral oxygen saturation in percentages
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
Changes of the surgical field
기간: 5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]
The surgeon's evaluation of the surgical field, graded from 0 (no interference) to 3 (maximal interference)
5 min after induction of anesthesia during DLV, 5 min after SLV, 5 min after HFLVV, 5 min after CPB flow reduced to 1/3, 5min after CPB flow reduced to 2/3, 15min after resuming of DLV]

공동 작업자 및 조사자

여기에서 이 연구와 관련된 사람과 조직을 찾을 수 있습니다.

수사관

  • 수석 연구원: Qingxiang Mao, M.D., Ph.D., Daping Hospital, Army Medical University

간행물 및 유용한 링크

연구에 대한 정보 입력을 담당하는 사람이 자발적으로 이러한 간행물을 제공합니다. 이것은 연구와 관련된 모든 것에 관한 것일 수 있습니다.

연구 기록 날짜

이 날짜는 ClinicalTrials.gov에 대한 연구 기록 및 요약 결과 제출의 진행 상황을 추적합니다. 연구 기록 및 보고된 결과는 공개 웹사이트에 게시되기 전에 특정 품질 관리 기준을 충족하는지 확인하기 위해 국립 의학 도서관(NLM)에서 검토합니다.

연구 주요 날짜

연구 시작 (실제)

2021년 6월 1일

기본 완료 (예상)

2021년 12월 15일

연구 완료 (예상)

2022년 3월 15일

연구 등록 날짜

최초 제출

2021년 5월 31일

QC 기준을 충족하는 최초 제출

2021년 6월 10일

처음 게시됨 (실제)

2021년 6월 15일

연구 기록 업데이트

마지막 업데이트 게시됨 (실제)

2021년 6월 15일

QC 기준을 충족하는 마지막 업데이트 제출

2021년 6월 10일

마지막으로 확인됨

2021년 6월 1일

추가 정보

이 연구와 관련된 용어

추가 관련 MeSH 약관

기타 연구 ID 번호

  • 2021-59

개별 참가자 데이터(IPD) 계획

개별 참가자 데이터(IPD)를 공유할 계획입니까?

아니

약물 및 장치 정보, 연구 문서

미국 FDA 규제 의약품 연구

아니

미국 FDA 규제 기기 제품 연구

아니

이 정보는 변경 없이 clinicaltrials.gov 웹사이트에서 직접 가져온 것입니다. 귀하의 연구 세부 정보를 변경, 제거 또는 업데이트하도록 요청하는 경우 register@clinicaltrials.gov. 문의하십시오. 변경 사항이 clinicaltrials.gov에 구현되는 즉시 저희 웹사이트에도 자동으로 업데이트됩니다. .

3
구독하다