此页面是自动翻译的,不保证翻译的准确性。请参阅 英文版 对于源文本。

Prognostic Evaluation of Tumor Volume and Its Changes in Radical Radiotherapy of Advanced NSCLC

2018年5月1日 更新者:Christian Ostheimer, MD、Martin-Luther-Universität Halle-Wittenberg

Multicentric Retrospective Prognostic Evaluation of Tumor Volume and Their Change in the Curative-intended, Radical Radiotherapy of Locally Advanced NSCLC

The aim of the study is to retrospectively monitor the 'gross tumor volume' (GTV) before initiation of radiotherapy and its changes during radiotherapy and to correlate them with retrospectively recorded patient data, as well as with prognostic and therapeutic outcome after definite radiotherapy of locally advanced NSCLC in stage UICC III.

研究概览

地位

完全的

详细说明

The prognostic relevance of the 'gross tumor volume' (GTV) in radiotherapy of advanced non-small-cell lung cancer (NSCLC) in stage III is adressed in a limited number of studies in the literature. The review article by Dubben et al., that comprises data until 1998, highlights the GTV as an important indicator and influencing factor for the therapeutic success after radiotherapy, albeit not being dominant over the T-stage (Dubben et al. 1988). In general, an increase in tumor volume correlates with a higher T-stage (Martel et al. 1997), but no congruence can neccessarily be assumed between the tumor volume and the T-determinator. Since the TNM-classification is primarily surgical however, it also does not provide sufficient information for prognosis when surgical therapy is not the first choice.

Available evidence suggests that the GTV in particular at the beginning of therapy acts as a statistically significant prognostic indicator regarding overall survival and / or local tumor control (Martel et al. 1997; Bradley et al. 2002; Basaki et al. 2006; Etiz et al. 2002; Werner-Wasik et al. 2001; Wer-ner-Wasik et al. 2008; Stinchcombe et al. 2006; Dehing-Oberije et al. 2008; Willner et al. 2002; Ball et al. 2013). A direct comparison between different studies is, however, often hampered due to the large variation of measurement time points during therapy, as well as the employed definition of the tumor volume. For example, all studies include patients whose GTV was determined after (neoadjuvant) chemotherapy. In addition, three studies even combine the tumor volume of the primary tumor with affected lymph nodes (Etiz et al. 2002; Werner-Wasik et al. 2008; Dehing-Oberije et al. 2008). Furthermore, no agreements can be found in the literature concerning volume changes during therapy. Nonetheless, all studies report a volume reduction at the end of therapy, albeit not always significant. In a study containing 10 patients treated with helical Tomotherapy, the authors observed a relative median tumor reduction during therapy of 1.2% per day (0.6-2.3%) (Kupelian et al. 2005).

The response of NSCLC to radiotherapy with or without chemotherapy is slow (Woodford et al. 2007) with tumors reaching their maximum response or minimal volume after 5-11 months after exposure (Werner-Wasik et al. 2001). If the tumor volume is determined too early, i.e. directly after the end of therapy, the results can lead to misinterpretation resulting in an overestimation of the tumor volume or correspondingly an underestimation of the therapeutic response (Siker et al. 2006). According to Bell et al., the predictive value of tumor volume changes in the first 18 months after radiotherapy is of particular importance. During this time, a significantly increased mortality was observed for larger tumor volumes.

Incorporation of a PET/CT in the context of the radiaton plan is advantageous with respect to the precise traget-volume definition and sparing of risk organs (Ruysscher et al. 2005; Nestle et al. 2006; Lavrenkov et al. 2005; van Baardwijk et al. 2007; Edet-Sanson et al. 2012; Ruysscher und Kirsch 2010; As-hamalla et al. 2005; Bradley et al. 2004; van Baardwijk et al. 2006; Vanuytsel et al. 2000). The superiority of PET compared to stand-alone CT was also shown in two meta-analysis (Gould et al. 2001; Gould et al. 2003). The importance of the 'standardized uptake value' (SUV) or the metabolic tumor volume (MTV) as well as the change in these parameters during radiotherapy has been repeatedly demonstrated (Berghmans et al. 2008, Gillham et al. 2008; Zhang et al. 2011; van Elmpt et al. 2012; Edet-Sanson et al. 2012; van Baardwijk et al. 2007; Vera et al. 2014; Vanuytsel et al. 2000; Feifei Na et al. 2014; Lopez Guerra et al. 2012; Lee et al. 2007; Lee et al. 2012; Huang et al. 2011; Xiang et al. 2012). These studies show partly a statistically significant correlation between tumorale FDG-accumulation before, during or after radiotherapy, or the decreasing accumulation during radiotherapy, respectively, and the overall survival. The results, however, suffer from a large uncertainty regarding the distinct influence corresponding to the SUV. Other studies report a significantly weaker association of the SUV and survival (Hoang et al. 2008; IKUSHIMA et al. 2010; Lopez Guerra et al. 2012). Due to the dynamic variations in the SUV and MTV during radiotherapy, a change in the prognostic validity during radiotherapy can be assumed. According to van Elmpt and others, the FDG uptake during the second (van Elmpt et al. 2012; Zhang et al. 2011) or fifth week of exposure is crucial for survival (Edet-Sanson et al. 2012). Work by van Baardwijk et al. shows an increase in the SUV in some patients during the first week of therapy, which is explained by radiation-triggered inflammation and tumor-biological changes due to radiotherapy (van Baardwijk et al. 2007). The results demonstrate that the appearance of tumor necrosis during radiotherapy or changes in the metabolic tumor situation or oxygenation affect the SUV parameter crucially (Hoang et al. 2008, Huang et al. 2014; Huang et al. 2011). In this context, tumorhypoxia and the corresponding effects on the metabolism of glucose are of particularly importance: A hypoxia-simulated upregulation of the membranic glucose transporter with consecutive increase of cellular FDG uptage can lead to a false SUV value, calling for a combination of SUV or MTV with other prognostic parameters as well as hypoxia-specific imaging (FMISO-PET) (Ikushima et al. 2010, Berghmans et al. 2008). Consequently, the optimal timevpoint for carrying out a PET during / after radiotherapy is not well defined, especially when the protracted tumor response after completion of radiotherapy is taken into account, leaving the integration of additional PET measurements during radiotherapy exclusively to clinical studies.

In conclusion, evidence from available literature regarding the prognostic and predictive value of tumor volume before and particularly its changes during radiotherapy of locally advanced NSCLC is conflicting and inconclusive. Currently available studies often include only a small number of patients with partly overlapping patient cohorts. Current data is additionally limited due to the highly heterogeneous GTV detection time points as well as the definition and detection methodology of tumor volumes.

Based on the observation that a significant tumor volume reduction occurs during radiotherapy, a reevaluation of the tumor volume during radiotherapy could allow an adaptation of the target volumes with dose escalating in the tumor area, while at the same time, improving the protection of organs at risk.

The prognostic or predictive significance of absolute tumor volumes or their change under radiotherapy is to be evaluated multicentrically and its integration into already existing prognostic models is to be multicentrically validated.

研究类型

观察性的

注册 (实际的)

346

联系人和位置

本节提供了进行研究的人员的详细联系信息,以及有关进行该研究的地点的信息。

学习地点

      • Innsbruck、奥地利、6020
        • Univ.-Klinik für Strahlentherapie-Radioonkologie
      • Berlin、德国、10117
        • Department of Radiooncology, Charité Campus Mitte und Campus Virchow Berlin
      • Cologne、德国、50937
        • Department of Radiooncology Cologne
      • Dresden、德国、01307
        • Department of Radiooncology Dresden
      • Dusseldorf、德国、40225
        • Department of Radiooncology, Düsseldorf
      • Düsseldorf、德国、40210
        • Department of Radiooncology, Duesseldorf
      • Erlangen、德国
        • Department of Radiooncology, Erlangen
      • Halle、德国、06120
        • Department of Radiooncology, Halle
      • Hamburg、德国、20246
        • Department of Radiooncology, Hamburg
      • Hannover、德国、30625
        • Department of Radiooncology, Hannover
      • Heidelberg、德国、69120
        • Department of Radiooncology, Heidelberg
      • Jena、德国、07743
        • Department of Radiooncology, Jena
      • Kiel、德国、24105
        • Department of Radiooncology, Kiel
      • Lubeck Hansestadt、德国、23562
        • Department of Radiooncology Lübeck
      • Mannheim、德国、68167
        • Department of Radiooncology, Mannheim
      • Muenster、德国、48143
        • Department of Radiooncology, Muenster
      • Munich、德国、81377
        • Department of Radiooncology, Munich (LMU, Campus Großhadern)
      • Munich、德国
        • Department of Radiooncology, Munich (TUM)
      • Regensburg、德国、93047
        • Department of Radiooncology, Regensburg
      • Antwerp、比利时
        • Iridium Cancer Network
      • St. Gallen、瑞士
        • Klinik für Strahlentherapie, St. Gallen
      • Sevilla、西班牙
        • Department of Radiooncology, Sevilla

参与标准

研究人员寻找符合特定描述的人,称为资格标准。这些标准的一些例子是一个人的一般健康状况或先前的治疗。

资格标准

适合学习的年龄

18年 至 100年 (成人、年长者)

接受健康志愿者

有资格学习的性别

全部

取样方法

非概率样本

研究人群

Locally advanced, inoperable stage III (A and B) non-small-cell lung cancer without prior surgery

描述

Inclusion Criteria:

  • Histologically confirmed NSCLC (Adeno / SCC) Stage UICC III A or B
  • CT based radiation treatment planning (PET- or PET-CT-based if available)
  • completed curative-intended radiotherapy ± chemotherapy (achieved total dose ≥ 60 Gy normofractionated or ≥ 50 Gy hypofractionated)

Exclusion Criteria:

  • Stereotactic radiotherapy
  • Second malignancy <5 years before diagnosis of NSCLC
  • Pleural effusion ipsilateral, extensive atelectasis ipsilateral

学习计划

本节提供研究计划的详细信息,包括研究的设计方式和研究的衡量标准。

研究是如何设计的?

设计细节

队列和干预

团体/队列
Locally advanced NSCLC-patients
Inoperable stage III (A and B) non-small-cell lung cancer (NSCLC) with indication for radical radiotherapy.

研究衡量的是什么?

主要结果指标

结果测量
措施说明
大体时间
Overall Survival (months)
大体时间:5 months
from the start of Radiotherapy until death / last seen during follow up
5 months

次要结果测量

结果测量
措施说明
大体时间
Absolute Basal Gross Tumor Volume (ml) before Radiotherapy (GTV1)
大体时间:5 months
in ml (cc) as detected by initial planning CT or diagnostic CT before the start of RT
5 months
Absolute Gross Tumor Volume before Radiation Boost (GTV2)
大体时间:5 months
in ml (cc) as detected in re-planning CT or CBCT before initiation of radiation boost
5 months
Relative Gross Tumor Volume Changes (delta GTV related to basal GTV)
大体时间:5 months
percental increase / decrease of GTV in relation to basal GTV1
5 months

合作者和调查者

在这里您可以找到参与这项研究的人员和组织。

调查人员

  • 首席研究员:Christian Ostheimer, MD、Klinik fuer Strahlentherapie, Martin-Luther-Universitaet Halle-Wittenberg

研究记录日期

这些日期跟踪向 ClinicalTrials.gov 提交研究记录和摘要结果的进度。研究记录和报告的结果由国家医学图书馆 (NLM) 审查,以确保它们在发布到公共网站之前符合特定的质量控制标准。

研究主要日期

学习开始 (实际的)

2017年4月1日

初级完成 (实际的)

2018年4月1日

研究完成 (实际的)

2018年4月1日

研究注册日期

首次提交

2017年2月14日

首先提交符合 QC 标准的

2017年2月15日

首次发布 (实际的)

2017年2月16日

研究记录更新

最后更新发布 (实际的)

2018年5月2日

上次提交的符合 QC 标准的更新

2018年5月1日

最后验证

2018年5月1日

更多信息

与本研究相关的术语

计划个人参与者数据 (IPD)

计划共享个人参与者数据 (IPD)?

未定

药物和器械信息、研究文件

研究美国 FDA 监管的药品

研究美国 FDA 监管的设备产品

此信息直接从 clinicaltrials.gov 网站检索,没有任何更改。如果您有任何更改、删除或更新研究详细信息的请求,请联系 register@clinicaltrials.gov. clinicaltrials.gov 上实施更改,我们的网站上也会自动更新.

3
订阅