此页面是自动翻译的,不保证翻译的准确性。请参阅 英文版 对于源文本。

MOLECULAR REGULATION OF MUSCLE GLUCOSE METABOLISM (AIMS 2A, 2B, 3)

2017年10月24日 更新者:Lawrence Mandarino、University of Arizona
The molecular nature of insulin resistance in human muscle is still incompletely defined. Our data indicate that acetylation of mitochondrial proteins in humans is regulated by muscle contraction and is dysregulated in insulin resistance. Poor function of mitochondria in skeletal muscle is a hallmark of insulin resistance in skeletal muscle. We propose to use a combination of clinical research and mass spectrometry techniques to determine how the cytosolic and mitochondrial protein acetylation is regulated by muscle contraction in insulin sensitive and resistant human volunteers. We will test the hypothesis that mitochondrial protein acetylation is decreased to a greater degree following a bout of exercise in insulin sensitive than in insulin resistant human muscle. Using these techniques we also propose to determine how acetylation of mitochondrial adenine nucleotide translocase (ANT1) at lysines 10, 23, and 92 regulates ANT1 structure and function. Finally, we propose 4) to use a combination of molecular modeling and in vitro assays together with the approach developed in Aim 3 to characterize the role of acetylation in other mitochondrial proteins. Protein targets for this aim will be prioritized based on the potential role of the protein in insulin resistance or mitochondrial function as well as dysregulation of its acetylation state in insulin resistant muscle.

研究概览

地位

未知

详细说明

The purpose of this project has been to define the molecular basis for insulin resistance in human muscle. The preceding two cycles of this project were devoted to using proteomics approaches to map and quantify serine/threonine (S/T) phosphorylation sites on insulin receptor substrate (IRS)-1 in skeletal muscle from healthy and insulin resistant humans.

Recent proteomics experiments reveal that another protein modification, lysine acetylation, is more common in non-histone proteins than has been recognized. There are no data, to our knowledge, regarding a relationship between insulin resistance in vivo in human muscle and protein acetylation. We have used proteomics techniques to discover a number of lysine acetylation sites in skeletal muscle proteins in vivo in humans, and this is prominent in mitochondrial proteins. Preliminary data show that mitochondrial protein acetylation is regulated by muscle contraction, and that this response is reduced in insulin resistance. Finally, the mitochondrial inner membrane protein adenine nucleotide translocase (ANT)1 was abundantly acetylated under resting conditions, and its deacetylation in response to contraction was reduced in insulin resistance. Because ANT1 exerts significant physiological control strength for ADP/ATP exchange, and because mitochondrial function is altered in insulin resistance, it is important to characterize this abnormality. Therefore, in order to determine how abnormalities in regulation of lysine acetylation characterize insulin resistant muscle, we propose:

2. To determine how the cytosolic and mitochondrial protein acetylomes are regulated by muscle contraction in insulin sensitive and resistant human volunteers. We will test the hypotheses that:

a. There is differential acetylation of cytosolic or mitochondrial proteins in insulin resistance.

b. Mitochondrial protein acetylation is decreased to a greater degree following a bout of exercise in insulin sensitive than in insulin resistant human muscle.

3. To determine how acetylation of the mitochondrial inner membrane adenine nucleotide translocase ANT1 regulates protein structure and function. We will use mitochondria isolated from human muscle biopsies and molecular dynamics and elastic network modeling to test the hypotheses that:

  1. Deacetylation of lysines 10, 23, and 92 increases ANT1 activity.
  2. Oxidation of the mitochondrial matrix (increasing the NAD/NADH ratio) raises deacetylation activity and decreases acetylation of ANT1.
  3. ANT1 molecular dynamics are altered by acetylation of lysines 10, 23, and 92.

These aims that involve clinical research will be complemented by two aims (Aims 1 and 4) performed entirely in vitro, not using human specimens or data. For context, these aims are listed on page 1 of the accompanying Research Proposal. We have retained the numbering scheme from the original proposal to avoid confusion. Please note that only Aims 2 and 3 involve clinical research.

研究类型

观察性的

注册 (预期的)

72

联系人和位置

本节提供了进行研究的人员的详细联系信息,以及有关进行该研究的地点的信息。

学习地点

    • Arizona
      • Tucson、Arizona、美国、85724
        • 招聘中
        • The University of Arizona
        • 接触:
        • 首席研究员:
          • Lawrence Mandarino, PhD

参与标准

研究人员寻找符合特定描述的人,称为资格标准。这些标准的一些例子是一个人的一般健康状况或先前的治疗。

资格标准

适合学习的年龄

21年 至 65年 (成人、年长者)

接受健康志愿者

不适用

有资格学习的性别

全部

取样方法

非概率样本

研究人群

The study population is described here with respect to the three aims of this project.

Specific Aim 2. To determine how the cytosolic and mitochondrial protein acetylomes are regulated by muscle contraction in insulin sensitive and resistant human volunteers.

Aim 2a. Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) nondiabetics 20 subjects will be enrolled

Aim 2b (muscle contraction and acetylation). Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 32 subjects will be enrolled

Specific Aim 3. To determine how acetylation of the mitochondrial inner membrane adenine nucleotide translocase ANT1 regulates protein structure and function.

Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 20 subjects will be enrolled.

描述

Inclusion Criteria:

  • Aim 2a. Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) nondiabetics 20 subjects will be enrolled

    1. Subjects must be able to communicate meaningfully with the investigator and must be legally competent to provide written informed consent.
    2. Subjects may be of either sex with age as described in each protocol. Female subjects must be non-lactating and will be eligible only if they have a negative pregnancy test throughout the study period.
    3. Subjects must range in age as described in each specific protocol.
    4. Subjects must have the following laboratory values:

      Hematocrit ≥ 35 vol% Serum creatinine ≤ 1.6 mg/dl AST (SGOT) < 2 times upper limit of normal ALT (SGPT) < 2 times upper limit of normal Alkaline phosphatase < 2 times upper limit of normal Triglycerides < 150 mg/dl. PT 11.7 -14.3 (During Liposyn/heparin infusion, PT will be determined to insure that it is < 1.5-2.0 times the normal value.) PTT 23.0-37.0.

      Aim 2b (muscle contraction and acetylation). Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 32 subjects will be enrolled

      Inclusion Criteria

      • Subjects must be able to communicate meaningfully with the investigator and must be legally competent to provide written informed consent.
      • Subjects may be of either sex with age as described in each protocol. Female subjects must be non-lactating and will be eligible only if they have a negative pregnancy test throughout the study period.
      • Subjects must range in age as described in each specific protocol.
      • Subjects must have the following laboratory values:

      Hematocrit ≥ 35 vol% Serum creatinine ≤ 1.6 mg/dl AST (SGOT) < 2 times upper limit of normal ALT (SGPT) < 2 times upper limit of normal Alkaline phosphatase < 2 times upper limit of normal Triglycerides < 150 mg/dl. PT 11.7 -14.3 (During Liposyn/heparin infusion, PT will be determined to insure that it is < 1.5-2.0 times the normal value.) PTT 23.0-37.0.

      Aim 3 Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 20 subjects will be enrolled.

      Inclusion Criteria

      • Subjects must be able to communicate meaningfully with the investigator and must be legally competent to provide written informed consent.
      • Subjects may be of either sex with age as described in each protocol. Female subjects must be non-lactating and will be eligible only if they have a negative pregnancy test throughout the study period.
      • Subjects must range in age as described in each specific protocol.
      • Subjects must have the following laboratory values:

      Hematocrit ≥ 35 vol% Serum creatinine ≤ 1.6 mg/dl AST (SGOT) < 2 times upper limit of normal ALT (SGPT) < 2 times upper limit of normal Alkaline phosphatase < 2 times upper limit of normal Triglycerides < 150 mg/dl. INR < 1.3

      Exclusion Criteria:

  • Aim 2a

    • Subjects must not be receiving any of the following medications: thiazide or furosemide diuretics, beta-blockers, or other chronic medications with known adverse effects on glucose tolerance levels unless the patient has been on a stable dose of such agents for the past three months before entry into the study. Subjects may be taking a stable dose of estrogens or other hormonal replacement therapy, if the subject has been on these agents for the prior three months. Subjects taking systemic glucocorticoids are excluded.
    • Subjects with a history of clinically significant heart disease (New York Heart Classification greater than grade II; more than non-specific ST-T wave changes on the EKG), peripheral vascular disease (history of claudication), or pulmonary disease (dyspnea on exertion of one flight or less; abnormal breath sounds on auscultation) will not be studied.
    • Recent systemic or pulmonary embolus, untreated high-risk proliferative retinopathy, recent retinal hemorrhage, uncontrolled hypertension, systolic BP>180, diastolic BP>105, autonomic neuropathy, resting heart rate >100, electrolyte abnormalities.

Aim 2b Exclusion Criteria

  • Subjects must not be receiving any of the following medications: thiazide or furosemide diuretics, beta-blockers, or other chronic medications with known adverse effects on glucose tolerance levels unless the patient has been on a stable dose of such agents for the past three months before entry into the study. Subjects may be taking a stable dose of estrogens or other hormonal replacement therapy, if the subject has been on these agents for the prior three months. Subjects taking systemic glucocorticoids are excluded.
  • Subjects with a history of clinically significant heart disease (New York Heart Classification greater than grade II; more than non-specific ST-T wave changes on the EKG), peripheral vascular disease (history of claudication), or pulmonary disease (dyspnea on exertion of one flight or less; abnormal breath sounds on auscultation) will not be studied.
  • Recent systemic or pulmonary embolus, untreated high-risk proliferative retinopathy, recent retinal hemorrhage, uncontrolled hypertension, systolic BP>180, diastolic BP>105, autonomic neuropathy, resting heart rate >100, electrolyte abnormalities.

Aim 3 Exclusion Criteria

  • Subjects must not be receiving any of the following medications: thiazide or furosemide diuretics, beta-blockers, or other chronic medications with known adverse effects on glucose tolerance levels unless the patient has been on a stable dose of such agents for the past three months before entry into the study. Subjects may be taking a stable dose of estrogens or other hormonal replacement therapy, if the subject has been on these agents for the prior three months. Subjects taking systemic glucocorticoids are excluded.
  • Subjects with a history of clinically significant heart disease (New York Heart Classification greater than grade II; more than non-specific ST-T wave changes on the EKG), peripheral vascular disease (history of claudication), or pulmonary disease (dyspnea on exertion of one flight or less; abnormal breath sounds on auscultation) will not be studied.
  • Recent systemic or pulmonary embolus, untreated high-risk proliferative retinopathy, recent retinal hemorrhage, uncontrolled hypertension, systolic BP>180, diastolic BP>105, autonomic neuropathy, resting heart rate >100, electrolyte abnormalities.
  • Healthy controls with BMI less than 25 who have first degree relatives with Type 2 diabetes are at high risk for insulin resistance, this is an exclusion for this study.

学习计划

本节提供研究计划的详细信息,包括研究的设计方式和研究的衡量标准。

研究是如何设计的?

设计细节

  • 观测模型:队列
  • 时间观点:预期

队列和干预

团体/队列
Aim 2a

Specific Aim 2. To determine how the cytosolic and mitochondrial protein acetylomes are regulated by muscle contraction in insulin sensitive and resistant human volunteers.

Protocol 2a. Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) nondiabetics 20 subjects will be enrolled

Aim 2b

Specific Aim 2. To determine how the cytosolic and mitochondrial protein acetylomes are regulated by muscle contraction in insulin sensitive and resistant human volunteers.

Protocol 2b (muscle contraction and acetylation) Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 32 subjects will be enrolled

Aim 3

Specific Aim 3. To determine how acetylation of the mitochondrial inner membrane adenine nucleotide translocase ANT1 regulates protein structure and function.

Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 20 subjects will be enrolled.

研究衡量的是什么?

主要结果指标

结果测量
措施说明
大体时间
ANT Acetylation
大体时间:2013-2017
Acetylation of adenine nucleotide translocase 1 at lysine 23 in human muscle.
2013-2017

合作者和调查者

在这里您可以找到参与这项研究的人员和组织。

调查人员

  • 首席研究员:Lawrence Mandarino, PHD、The University of Arizona

研究记录日期

这些日期跟踪向 ClinicalTrials.gov 提交研究记录和摘要结果的进度。研究记录和报告的结果由国家医学图书馆 (NLM) 审查,以确保它们在发布到公共网站之前符合特定的质量控制标准。

研究主要日期

学习开始 (实际的)

2016年11月1日

初级完成 (预期的)

2018年8月1日

研究完成 (预期的)

2018年8月1日

研究注册日期

首次提交

2017年10月24日

首先提交符合 QC 标准的

2017年10月24日

首次发布 (实际的)

2017年10月27日

研究记录更新

最后更新发布 (实际的)

2017年10月27日

上次提交的符合 QC 标准的更新

2017年10月24日

最后验证

2017年10月1日

更多信息

与本研究相关的术语

其他研究编号

  • 1606632714A004

药物和器械信息、研究文件

研究美国 FDA 监管的药品

研究美国 FDA 监管的设备产品

此信息直接从 clinicaltrials.gov 网站检索,没有任何更改。如果您有任何更改、删除或更新研究详细信息的请求,请联系 register@clinicaltrials.gov. clinicaltrials.gov 上实施更改,我们的网站上也会自动更新.

3
订阅