Questa pagina è stata tradotta automaticamente e l'accuratezza della traduzione non è garantita. Si prega di fare riferimento al Versione inglese per un testo di partenza.

MOLECULAR REGULATION OF MUSCLE GLUCOSE METABOLISM (AIMS 2A, 2B, 3)

24 ottobre 2017 aggiornato da: Lawrence Mandarino, University of Arizona
The molecular nature of insulin resistance in human muscle is still incompletely defined. Our data indicate that acetylation of mitochondrial proteins in humans is regulated by muscle contraction and is dysregulated in insulin resistance. Poor function of mitochondria in skeletal muscle is a hallmark of insulin resistance in skeletal muscle. We propose to use a combination of clinical research and mass spectrometry techniques to determine how the cytosolic and mitochondrial protein acetylation is regulated by muscle contraction in insulin sensitive and resistant human volunteers. We will test the hypothesis that mitochondrial protein acetylation is decreased to a greater degree following a bout of exercise in insulin sensitive than in insulin resistant human muscle. Using these techniques we also propose to determine how acetylation of mitochondrial adenine nucleotide translocase (ANT1) at lysines 10, 23, and 92 regulates ANT1 structure and function. Finally, we propose 4) to use a combination of molecular modeling and in vitro assays together with the approach developed in Aim 3 to characterize the role of acetylation in other mitochondrial proteins. Protein targets for this aim will be prioritized based on the potential role of the protein in insulin resistance or mitochondrial function as well as dysregulation of its acetylation state in insulin resistant muscle.

Panoramica dello studio

Stato

Sconosciuto

Descrizione dettagliata

The purpose of this project has been to define the molecular basis for insulin resistance in human muscle. The preceding two cycles of this project were devoted to using proteomics approaches to map and quantify serine/threonine (S/T) phosphorylation sites on insulin receptor substrate (IRS)-1 in skeletal muscle from healthy and insulin resistant humans.

Recent proteomics experiments reveal that another protein modification, lysine acetylation, is more common in non-histone proteins than has been recognized. There are no data, to our knowledge, regarding a relationship between insulin resistance in vivo in human muscle and protein acetylation. We have used proteomics techniques to discover a number of lysine acetylation sites in skeletal muscle proteins in vivo in humans, and this is prominent in mitochondrial proteins. Preliminary data show that mitochondrial protein acetylation is regulated by muscle contraction, and that this response is reduced in insulin resistance. Finally, the mitochondrial inner membrane protein adenine nucleotide translocase (ANT)1 was abundantly acetylated under resting conditions, and its deacetylation in response to contraction was reduced in insulin resistance. Because ANT1 exerts significant physiological control strength for ADP/ATP exchange, and because mitochondrial function is altered in insulin resistance, it is important to characterize this abnormality. Therefore, in order to determine how abnormalities in regulation of lysine acetylation characterize insulin resistant muscle, we propose:

2. To determine how the cytosolic and mitochondrial protein acetylomes are regulated by muscle contraction in insulin sensitive and resistant human volunteers. We will test the hypotheses that:

a. There is differential acetylation of cytosolic or mitochondrial proteins in insulin resistance.

b. Mitochondrial protein acetylation is decreased to a greater degree following a bout of exercise in insulin sensitive than in insulin resistant human muscle.

3. To determine how acetylation of the mitochondrial inner membrane adenine nucleotide translocase ANT1 regulates protein structure and function. We will use mitochondria isolated from human muscle biopsies and molecular dynamics and elastic network modeling to test the hypotheses that:

  1. Deacetylation of lysines 10, 23, and 92 increases ANT1 activity.
  2. Oxidation of the mitochondrial matrix (increasing the NAD/NADH ratio) raises deacetylation activity and decreases acetylation of ANT1.
  3. ANT1 molecular dynamics are altered by acetylation of lysines 10, 23, and 92.

These aims that involve clinical research will be complemented by two aims (Aims 1 and 4) performed entirely in vitro, not using human specimens or data. For context, these aims are listed on page 1 of the accompanying Research Proposal. We have retained the numbering scheme from the original proposal to avoid confusion. Please note that only Aims 2 and 3 involve clinical research.

Tipo di studio

Osservativo

Iscrizione (Anticipato)

72

Contatti e Sedi

Questa sezione fornisce i recapiti di coloro che conducono lo studio e informazioni su dove viene condotto lo studio.

Luoghi di studio

    • Arizona
      • Tucson, Arizona, Stati Uniti, 85724
        • Reclutamento
        • The University of Arizona
        • Contatto:
        • Investigatore principale:
          • Lawrence Mandarino, PhD

Criteri di partecipazione

I ricercatori cercano persone che corrispondano a una certa descrizione, chiamata criteri di ammissibilità. Alcuni esempi di questi criteri sono le condizioni generali di salute di una persona o trattamenti precedenti.

Criteri di ammissibilità

Età idonea allo studio

Da 21 anni a 65 anni (Adulto, Adulto più anziano)

Accetta volontari sani

N/A

Sessi ammissibili allo studio

Tutto

Metodo di campionamento

Campione non probabilistico

Popolazione di studio

The study population is described here with respect to the three aims of this project.

Specific Aim 2. To determine how the cytosolic and mitochondrial protein acetylomes are regulated by muscle contraction in insulin sensitive and resistant human volunteers.

Aim 2a. Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) nondiabetics 20 subjects will be enrolled

Aim 2b (muscle contraction and acetylation). Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 32 subjects will be enrolled

Specific Aim 3. To determine how acetylation of the mitochondrial inner membrane adenine nucleotide translocase ANT1 regulates protein structure and function.

Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 20 subjects will be enrolled.

Descrizione

Inclusion Criteria:

  • Aim 2a. Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) nondiabetics 20 subjects will be enrolled

    1. Subjects must be able to communicate meaningfully with the investigator and must be legally competent to provide written informed consent.
    2. Subjects may be of either sex with age as described in each protocol. Female subjects must be non-lactating and will be eligible only if they have a negative pregnancy test throughout the study period.
    3. Subjects must range in age as described in each specific protocol.
    4. Subjects must have the following laboratory values:

      Hematocrit ≥ 35 vol% Serum creatinine ≤ 1.6 mg/dl AST (SGOT) < 2 times upper limit of normal ALT (SGPT) < 2 times upper limit of normal Alkaline phosphatase < 2 times upper limit of normal Triglycerides < 150 mg/dl. PT 11.7 -14.3 (During Liposyn/heparin infusion, PT will be determined to insure that it is < 1.5-2.0 times the normal value.) PTT 23.0-37.0.

      Aim 2b (muscle contraction and acetylation). Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 32 subjects will be enrolled

      Inclusion Criteria

      • Subjects must be able to communicate meaningfully with the investigator and must be legally competent to provide written informed consent.
      • Subjects may be of either sex with age as described in each protocol. Female subjects must be non-lactating and will be eligible only if they have a negative pregnancy test throughout the study period.
      • Subjects must range in age as described in each specific protocol.
      • Subjects must have the following laboratory values:

      Hematocrit ≥ 35 vol% Serum creatinine ≤ 1.6 mg/dl AST (SGOT) < 2 times upper limit of normal ALT (SGPT) < 2 times upper limit of normal Alkaline phosphatase < 2 times upper limit of normal Triglycerides < 150 mg/dl. PT 11.7 -14.3 (During Liposyn/heparin infusion, PT will be determined to insure that it is < 1.5-2.0 times the normal value.) PTT 23.0-37.0.

      Aim 3 Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 20 subjects will be enrolled.

      Inclusion Criteria

      • Subjects must be able to communicate meaningfully with the investigator and must be legally competent to provide written informed consent.
      • Subjects may be of either sex with age as described in each protocol. Female subjects must be non-lactating and will be eligible only if they have a negative pregnancy test throughout the study period.
      • Subjects must range in age as described in each specific protocol.
      • Subjects must have the following laboratory values:

      Hematocrit ≥ 35 vol% Serum creatinine ≤ 1.6 mg/dl AST (SGOT) < 2 times upper limit of normal ALT (SGPT) < 2 times upper limit of normal Alkaline phosphatase < 2 times upper limit of normal Triglycerides < 150 mg/dl. INR < 1.3

      Exclusion Criteria:

  • Aim 2a

    • Subjects must not be receiving any of the following medications: thiazide or furosemide diuretics, beta-blockers, or other chronic medications with known adverse effects on glucose tolerance levels unless the patient has been on a stable dose of such agents for the past three months before entry into the study. Subjects may be taking a stable dose of estrogens or other hormonal replacement therapy, if the subject has been on these agents for the prior three months. Subjects taking systemic glucocorticoids are excluded.
    • Subjects with a history of clinically significant heart disease (New York Heart Classification greater than grade II; more than non-specific ST-T wave changes on the EKG), peripheral vascular disease (history of claudication), or pulmonary disease (dyspnea on exertion of one flight or less; abnormal breath sounds on auscultation) will not be studied.
    • Recent systemic or pulmonary embolus, untreated high-risk proliferative retinopathy, recent retinal hemorrhage, uncontrolled hypertension, systolic BP>180, diastolic BP>105, autonomic neuropathy, resting heart rate >100, electrolyte abnormalities.

Aim 2b Exclusion Criteria

  • Subjects must not be receiving any of the following medications: thiazide or furosemide diuretics, beta-blockers, or other chronic medications with known adverse effects on glucose tolerance levels unless the patient has been on a stable dose of such agents for the past three months before entry into the study. Subjects may be taking a stable dose of estrogens or other hormonal replacement therapy, if the subject has been on these agents for the prior three months. Subjects taking systemic glucocorticoids are excluded.
  • Subjects with a history of clinically significant heart disease (New York Heart Classification greater than grade II; more than non-specific ST-T wave changes on the EKG), peripheral vascular disease (history of claudication), or pulmonary disease (dyspnea on exertion of one flight or less; abnormal breath sounds on auscultation) will not be studied.
  • Recent systemic or pulmonary embolus, untreated high-risk proliferative retinopathy, recent retinal hemorrhage, uncontrolled hypertension, systolic BP>180, diastolic BP>105, autonomic neuropathy, resting heart rate >100, electrolyte abnormalities.

Aim 3 Exclusion Criteria

  • Subjects must not be receiving any of the following medications: thiazide or furosemide diuretics, beta-blockers, or other chronic medications with known adverse effects on glucose tolerance levels unless the patient has been on a stable dose of such agents for the past three months before entry into the study. Subjects may be taking a stable dose of estrogens or other hormonal replacement therapy, if the subject has been on these agents for the prior three months. Subjects taking systemic glucocorticoids are excluded.
  • Subjects with a history of clinically significant heart disease (New York Heart Classification greater than grade II; more than non-specific ST-T wave changes on the EKG), peripheral vascular disease (history of claudication), or pulmonary disease (dyspnea on exertion of one flight or less; abnormal breath sounds on auscultation) will not be studied.
  • Recent systemic or pulmonary embolus, untreated high-risk proliferative retinopathy, recent retinal hemorrhage, uncontrolled hypertension, systolic BP>180, diastolic BP>105, autonomic neuropathy, resting heart rate >100, electrolyte abnormalities.
  • Healthy controls with BMI less than 25 who have first degree relatives with Type 2 diabetes are at high risk for insulin resistance, this is an exclusion for this study.

Piano di studio

Questa sezione fornisce i dettagli del piano di studio, compreso il modo in cui lo studio è progettato e ciò che lo studio sta misurando.

Come è strutturato lo studio?

Dettagli di progettazione

  • Modelli osservazionali: Coorte
  • Prospettive temporali: Prospettiva

Coorti e interventi

Gruppo / Coorte
Aim 2a

Specific Aim 2. To determine how the cytosolic and mitochondrial protein acetylomes are regulated by muscle contraction in insulin sensitive and resistant human volunteers.

Protocol 2a. Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) nondiabetics 20 subjects will be enrolled

Aim 2b

Specific Aim 2. To determine how the cytosolic and mitochondrial protein acetylomes are regulated by muscle contraction in insulin sensitive and resistant human volunteers.

Protocol 2b (muscle contraction and acetylation) Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 32 subjects will be enrolled

Aim 3

Specific Aim 3. To determine how acetylation of the mitochondrial inner membrane adenine nucleotide translocase ANT1 regulates protein structure and function.

Subjects. Two groups (aged 21-65) will be studied: lean (BMI<25), healthy insulin sensitive subjects, and obese (BMI>30) 20 subjects will be enrolled.

Cosa sta misurando lo studio?

Misure di risultato primarie

Misura del risultato
Misura Descrizione
Lasso di tempo
ANT Acetylation
Lasso di tempo: 2013-2017
Acetylation of adenine nucleotide translocase 1 at lysine 23 in human muscle.
2013-2017

Collaboratori e investigatori

Qui è dove troverai le persone e le organizzazioni coinvolte in questo studio.

Investigatori

  • Investigatore principale: Lawrence Mandarino, PHD, The University of Arizona

Studiare le date dei record

Queste date tengono traccia dell'avanzamento della registrazione dello studio e dell'invio dei risultati di sintesi a ClinicalTrials.gov. I record degli studi e i risultati riportati vengono esaminati dalla National Library of Medicine (NLM) per assicurarsi che soddisfino specifici standard di controllo della qualità prima di essere pubblicati sul sito Web pubblico.

Studia le date principali

Inizio studio (Effettivo)

1 novembre 2016

Completamento primario (Anticipato)

1 agosto 2018

Completamento dello studio (Anticipato)

1 agosto 2018

Date di iscrizione allo studio

Primo inviato

24 ottobre 2017

Primo inviato che soddisfa i criteri di controllo qualità

24 ottobre 2017

Primo Inserito (Effettivo)

27 ottobre 2017

Aggiornamenti dei record di studio

Ultimo aggiornamento pubblicato (Effettivo)

27 ottobre 2017

Ultimo aggiornamento inviato che soddisfa i criteri QC

24 ottobre 2017

Ultimo verificato

1 ottobre 2017

Maggiori informazioni

Termini relativi a questo studio

Altri numeri di identificazione dello studio

  • 1606632714A004

Informazioni su farmaci e dispositivi, documenti di studio

Studia un prodotto farmaceutico regolamentato dalla FDA degli Stati Uniti

No

Studia un dispositivo regolamentato dalla FDA degli Stati Uniti

No

Queste informazioni sono state recuperate direttamente dal sito web clinicaltrials.gov senza alcuna modifica. In caso di richieste di modifica, rimozione o aggiornamento dei dettagli dello studio, contattare register@clinicaltrials.gov. Non appena verrà implementata una modifica su clinicaltrials.gov, questa verrà aggiornata automaticamente anche sul nostro sito web .

3
Sottoscrivi