此页面是自动翻译的,不保证翻译的准确性。请参阅 英文版 对于源文本。

Granulocyte Transfusions After Umbilical Cord Blood Transplant

2022年6月17日 更新者:University of Manchester

The Use of Granulocyte Transfusions After Umbilical Cord Blood Transplant for Leukaemia: A Prospective, Non-randomised, Single-centre Study to Evaluate Safety and Immune Reconstitution

Although most children with leukaemia are cured using drugs (chemotherapy) alone, for some children additional treatments are needed. Stem cell transplant can cure children where chemotherapy and other drugs have failed. In this case, the immune cells of the donor attack the leukaemia cells of the patient. Cord blood collected from the placenta of unrelated babies is often used as a donor cell source and appears to work well at controlling leukaemia and less likely to cause complications such as when the immune cells also mistakenly attack healthy tissues (called graft versus host disease, GVHD).

The investigators have noticed that during cord blood transplant, the donor immune system appears to recover more quickly and not be associated with GVHD, when a type of blood transfusion containing white cells are also given to the patient. The infused white cells appear to stimulate the donor immune cells to expand much more than usually seen.

During this research, the investigators will study this immune cell expansion during cord blood transplant in children with difficult-to-cure leukaemia who also receive a transfusion of white cells, termed granulocytes. The investigators will assess the safety of the effects of the white cell transfusions and the immune cell expansion on the child, and look at the outcomes on the patient's leukaemia, and whether there is GVHD or not.

研究概览

地位

招聘中

条件

详细说明

Most children with acute leukaemia are cured with chemotherapy alone but a few children are either refractory to such therapy, or relapse after it has been administered.

Some of these relapsed or refractory children are given HCT (hematopoietic cell transplantation), and some will be cured with HCT. HCT acts to cure children with leukaemia in two ways:

  • There is chemotherapy given before the transplant, to get rid of recipient marrow and the recipient immune system. This chemotherapy is of higher dose than is given in standard chemotherapy protocols, and this dose escalation might overcome the resistance to chemotherapy that is inherent in children with relapsed or refractory disease.
  • The engrafting immune system - derived from the HCT donor - recognises the residual leukaemia and rejects it. This is known as graft-versus-leukaemia, and this Is the main way that transplant cures refractory diseases.

Most children with refractory and / or relapsed leukaemia will die of their leukaemia. Transplant offers a chance of cure where conventional therapies will fail. Transplant works through this graft-versus leukaemia effect. This is related to graft-versus-disease (GVHD) and involves a recognition by donor derived T-cells of differences in the host leukaemia cells, and more generally in the recipient.

In general, the risk of relapse after transplant is:

  • Reduced where there is graft versus host disease
  • Reduced where the T-cells are left in the graft, a T-cell replete transplant. Often T-cells are removed from the graft - bone marrow, blood, or cord blood - to reduce the risk of GVHD
  • Reduced where there is mismatch between the donor and recipient. The investigators and others have shown that it is possible to do T-cell replete, mismatched unrelated donor transplant in umbilical cord transplant.
  • The risk of relapse is less in cord blood transplant compared to other cell sources, and this is particularly evident where there is residual disease present, and the risk of treatment failure is highest.
  • The risk of chronic GVHD is reduced after cord blood transplant, even where the transplant is T-cell replete and there is mismatch between donor and recipient. Using adult donor-derived, mismatched donor transplant in a T-cell replete setting is associated with a risk of severe acute GVHD and chronic, extensive GVHD which limits quality of life.
  • The most meaningful endpoint for children undergoing transplantation for any indication is disease-free and chronic GVHD-free survival. In malignancy this is best achieved using cord blood in a T-cell replete setting.

One of the investigators groups have published data from a xenograft model demonstrating that cord blood T-cells are better at controlling a human leukaemia than adult T-cells, and that the actual cord T-cells infiltrating the xenografted tumour are Cluster of Differentiation 810 (CD810). However, after T-cell replete transplant most of the recovering T-cells are Cluster of Differentiation 4 (CD4) and not Cluster of Differentiation (CD812). Childhood leukaemia is a rapidly proliferative disease, and experience tells us that relapse can happen early, within the first weeks and months. A graft versus tumour effect must be established quickly therefore, to prevent disease recurrence, and death from disease.

In this research, the investigators seek to replicate results that have been described and published prior. Here the investigators demonstrated early, transient, massive Cluster of Differentiation (CD8) T-cell reconstitution after cord blood transplantation without any chronic GVHD, despite early cessation of post-transplant immune suppression.

This observation is important since it incorporates the important components of a clinically meaningful graft-versus-leukaemia, from previous work:

  • CD8 biased
  • Cord blood
  • T-cell replete setting
  • Mismatched donors
  • No chronic GVHD

This has been recognized by leaders in the field, and as part of the peer review of this work. Milano, an expert in Cord Blood transplant in refractory leukaemia has written that "this is not only economically beneficial but may also result in a paradigm shift for the treatment of patients with high-risk leukaemia's. "

The trial is funded by bone marrow transplant local funds and by funds generated specifically for this research by families, including families with difficult-to-cure, including multiple relapsed and refractory leukaemia. The rationale and patient summaries have been shared with those families, in support of their fundraising efforts. Families of children with such leukaemia understand how transplant works, the risk it generates and the implications when cell therapies also fail where conventional therapy has already failed. They are the best placed of all of us to understand this balance of risk of therapy with risk of treatment failure, and the best placed therefore to understand the rationale and scope of this research.

It is important to replicate the data that the investigators have published. It is important that in a trial setting that the investigators better define the safety of the immune cell expansion, and the nature of the T-cells that are derived. It is important research, for the reasons explained above, and recognised by Milano and other commentators.

There is a control group for T-cell expansion numbers, and for safety evaluations including cytokine release syndrome and engraftment kinetics. This is not an efficacy trial, and the relapsed, refractory leukaemia is rare in children, and so randomisation is not appropriate. The granulocyte doses are standard for children, and what the investigators reported in their preliminary experience.

研究类型

介入性

注册 (预期的)

20

阶段

  • 不适用

联系人和位置

本节提供了进行研究的人员的详细联系信息,以及有关进行该研究的地点的信息。

学习联系方式

研究联系人备份

学习地点

      • Manchester、英国、M13 9WL
        • 招聘中
        • Royal Manchester Childrens Hospital, MFT
        • 接触:
        • 接触:

参与标准

研究人员寻找符合特定描述的人,称为资格标准。这些标准的一些例子是一个人的一般健康状况或先前的治疗。

资格标准

适合学习的年龄

不超过 16年 (孩子)

接受健康志愿者

有资格学习的性别

全部

描述

Inclusion Criteria:

  1. Children, aged <16 years, undergoing a first allogeneic, unrelated donor, T-cell replete, umbilical cord blood HSCT for high risk acute leukaemia.
  2. Availability of at least a 6/8 allelic matched cord blood, of adequate cell dose, after allele-level matching at HLA (Human Leukocyte Antigen)-A, -B, -C, and -DRB1
  3. Informed consent by parent or guardian. Age appropriate Assent will also be collected in those Children age 16 and under.

Exclusion Criteria:

  1. Patients participating in other HSCT clinical trial
  2. The transplant not indicated according to National Health Service England (NHSE) and British Society of Bone Marrow Transplant (BSBMT) Paediatric Transplant Group.
  3. Pooled Granulocyte Transfusion contraindicated for any reason
  4. Previous T cell replete unrelated donor cord blood transplant
  5. Patients with a previous history of sensitivity to granulocyte transfusion will be excluded from the study

学习计划

本节提供研究计划的详细信息,包括研究的设计方式和研究的衡量标准。

研究是如何设计的?

设计细节

  • 主要用途:基础科学
  • 分配:非随机化
  • 介入模型:并行分配
  • 屏蔽:无(打开标签)

武器和干预

参与者组/臂
干预/治疗
实验性的:Granulocytes
Patient to receive pooled granulocytes for 7 days concurrently. 10 participants will be approached for this arm.
Receive granulocytes for 7 consecutive days after engraftment post transplant
无干预:Control
Non-randomised control arm, where patients who are receiving a stem cell transplant, as described in the eligibility criteria, are asked for a blood sample. This is to establish a baseline versus the experimental arm. 10 participants will be approached for this arm.

研究衡量的是什么?

主要结果指标

结果测量
措施说明
大体时间
What is the number of patients with grade 1-4 cytokine release syndrome, related to the granulocytes infusions?
大体时间:2 years
This is to access safety of the granulocyte infusions.
2 years
What is the number of patients with allo-immunisation after the granulocyte infusions?
大体时间:2 years
This is to access safety of the granulocyte infusions.
2 years

次要结果测量

结果测量
措施说明
大体时间
What is the median day to neutrophil and to platelet engraftment, and compared with a control group of cord blood transplant recipients not receiving granulocytes?
大体时间:2 years
This is to measure the effect that the granulocyte infusion course have on engraftment and on the disease
2 years
How many patients experience grade II-IV GvHD?
大体时间:2 years
This is to measure the effect that the granulocyte infusion course have on engraftment and on the disease
2 years
What is the median disease-free and overall survival in this patient cohort?
大体时间:2 years
This is to measure the effect that the granulocyte infusion course have on engraftment and on the disease
2 years
How many patients enter flow and molecular remission after the transplant?
大体时间:2 years
This is to measure the effect that the granulocyte infusion course have on engraftment and on the disease
2 years
What is the median date of cessation of immune suppression after the transplant, and compared with a control group of cord blood transplant recipients not receiving granulocytes?
大体时间:2 years
This is to measure the effect that the granulocyte infusion course have on engraftment and on the disease
2 years

合作者和调查者

在这里您可以找到参与这项研究的人员和组织。

调查人员

  • 学习椅:Robert Wynn, MD FRCPath、Royal Manchester Children's Hospital

出版物和有用的链接

负责输入研究信息的人员自愿提供这些出版物。这些可能与研究有关。

一般刊物

研究记录日期

这些日期跟踪向 ClinicalTrials.gov 提交研究记录和摘要结果的进度。研究记录和报告的结果由国家医学图书馆 (NLM) 审查,以确保它们在发布到公共网站之前符合特定的质量控制标准。

研究主要日期

学习开始 (实际的)

2021年9月14日

初级完成 (预期的)

2023年6月1日

研究完成 (预期的)

2023年6月1日

研究注册日期

首次提交

2021年12月17日

首先提交符合 QC 标准的

2022年6月17日

首次发布 (实际的)

2022年6月21日

研究记录更新

最后更新发布 (实际的)

2022年6月21日

上次提交的符合 QC 标准的更新

2022年6月17日

最后验证

2022年6月1日

更多信息

与本研究相关的术语

其他研究编号

  • 295998

计划个人参与者数据 (IPD)

计划共享个人参与者数据 (IPD)?

药物和器械信息、研究文件

研究美国 FDA 监管的药品

研究美国 FDA 监管的设备产品

此信息直接从 clinicaltrials.gov 网站检索,没有任何更改。如果您有任何更改、删除或更新研究详细信息的请求,请联系 register@clinicaltrials.gov. clinicaltrials.gov 上实施更改,我们的网站上也会自动更新.

3
订阅