PED NEONAT 20-000599 Fetal Body Composition

October 19, 2022 updated by: Katie Strobel, MD, University of California, Los Angeles

Fetal Body Composition and Free-Breathing Magnetic Resonance Imaging

Obesity is an ongoing public health problem that is difficult to treat. There is evidence that obesity has fetal origins. Body composition, including visceral, subcutaneous, brown, and hepatic fat have been found to be important predictors in obesity and metabolic syndrome. Magnetic resonance imaging (MRI) can quantify body composition that does not require radiation but is motion limited. The investigators have developed a motion-compensated MRI sequence, also known as "free breathing" MRI. In this study, the investigators plan to obtain free-breathing MRIs of pregnant women in the third trimester of pregnancy. MRIs will be obtained from healthy mothers, mothers with growth-restricted fetuses, and mothers with gestational diabetes. The different types of adipose tissue will be measured and compared between groups and correlated to birth growth parameters. The goal is this study is to assess if motion-compensated MRI can help predict early growth patterns in infancy.

Study Overview

Detailed Description

1.1 OBJECTIVE This study's goals are to: 1) use free-breathing magnetic resonance imaging (FB-MRI) to measure fetal body composition in the third trimester and 2) determine how the FB-MRI quantitative measurements compare to growth parameters at birth.

1.2 HYPOTHESES AND SPECIFIC AIMS

To accomplish the investigators' objectives, the aims and hypotheses are as follows:

Specific Aim 1:

In a prospective study in women with healthy pregnancies and women with fetuses that have intrauterine growth restriction (IUGR) and gestational diabetes, the investigators will quantify fetal subcutaneous, visceral, and brown adipose tissue volumes and proton-density fat fraction (PDFF) using FB-MRI in the third trimester.

Hypothesis 1: Using a FB-MRI technique the investigators will find the following,

  1. The growth-restricted fetus will have less visceral, subcutaneous, and brown adipose tissue volume and PDFF when compared to healthy fetuses and fetuses whose mothers have gestational diabetes.
  2. Fetuses whose mothers have gestational diabetes will have a greater subcutaneous and visceral adipose tissue volume and PDFF compared to healthy fetuses.

Specific Aim 2:

In a prospective study in pregnant women and their fetuses, the investigators will compare volume and PDFF measurements of fetal visceral, subcutaneous, and brown adipose tissue obtained with FB-MRI to birth growth parameters of these infants.

Hypothesis 2: The volume and PDFF of fetal visceral and subcutaneous adipose tissue will correlate positively with birth weight and length z-score.

Study Type

Interventional

Enrollment (Actual)

23

Phase

  • Phase 1

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • California
      • Los Angeles, California, United States, 90095
        • University of California-Los Angeles
      • Santa Monica, California, United States, 90404
        • University of California- Los Angeles Santa Monica

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years and older (Adult, Older Adult)

Accepts Healthy Volunteers

Yes

Description

Inclusion Criteria:

  • Pregnant women with singleton pregnancies (healthy cohort)
  • Pregnant women with fetuses with weights < 10th percentile weight for gestational age (IUGR cohort)
  • Pregnant women with gestational diabetes (diabetes cohort)

Exclusion Criteria:

  • Pregnant minors
  • Major congenital anomalies or disease processes in the fetus
  • Fetus with known chromosomal anomalies
  • Mothers who do not plan to deliver at UCLA
  • Multiple pregnancy (i.e. twins, triplets, etc)
  • History of claustrophobia
  • Contraindications to MRI such as metallic devices in the body that are not MRI compatible

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Other
  • Allocation: Non-Randomized
  • Interventional Model: Parallel Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Other: Healthy Pregnancy

Patient will have a fetal MRI performed in the third trimester. All MRI scans will be performed on 3 T scanners (e.g., Skyra or Prisma, Siemens). Our newly developed FB-MRI quantification technique leverages a multi-echo 3D stack-of-radial sampling trajectory with golden-angle acquisition ordering to suppress motion artifacts and enable free-breathing imaging of the abdomen in around 5 minutes. In addition, our FB-MRI technique is compatible with data under sampling to accelerate the free-breathing scan to 1-2 min. In this study, we will optimize the parameters of our FB-MRI technique (spatial resolution, spatial coverage, acceleration factor) to balance trade-offs between scan time, image quality, fat quantification accuracy, and patient comfort/compliance. Subjects will be provided ear plugs to limit amount of noise from MRI machines.

Maternal demographics, pregnancy clinical course and infant growth parameters will be recorded.

Subject will have a one time MRI scan.
Other: Pregnant Mothers with gestational diabetes

Patient will have a fetal MRI performed in the third trimester. All MRI scans will be performed on 3 T scanners (e.g., Skyra or Prisma, Siemens). Our newly developed FB-MRI quantification technique leverages a multi-echo 3D stack-of-radial sampling trajectory with golden-angle acquisition ordering to suppress motion artifacts and enable free-breathing imaging of the abdomen in around 5 minutes. In addition, our FB-MRI technique is compatible with data under sampling to accelerate the free-breathing scan to 1-2 min. In this study, we will optimize the parameters of our FB-MRI technique (spatial resolution, spatial coverage, acceleration factor) to balance trade-offs between scan time, image quality, fat quantification accuracy, and patient comfort/compliance. Subjects will be provided ear plugs to limit amount of noise from MRI machines.

Maternal demographics, pregnancy clinical course and infant growth parameters will be recorded.

Subject will have a one time MRI scan.
Other: Pregnant Mothers with infants diagnosed with IUGR

Patient will have a fetal MRI performed in the third trimester. All MRI scans will be performed on 3 T scanners (e.g., Skyra or Prisma, Siemens). Our newly developed FB-MRI quantification technique leverages a multi-echo 3D stack-of-radial sampling trajectory with golden-angle acquisition ordering to suppress motion artifacts and enable free-breathing imaging of the abdomen in around 5 minutes. In addition, our FB-MRI technique is compatible with data under sampling to accelerate the free-breathing scan to 1-2 min. In this study, we will optimize the parameters of our FB-MRI technique (spatial resolution, spatial coverage, acceleration factor) to balance trade-offs between scan time, image quality, fat quantification accuracy, and patient comfort/compliance. Subjects will be provided ear plugs to limit amount of noise from MRI machines.

Maternal demographics, pregnancy clinical course and infant growth parameters will be recorded.

Subject will have a one time MRI scan.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Maternal Visceral Adipose Tissue Volume
Time Frame: During the procedure (MRI)
MRI data will be reconstructed by Siemens scanner software to produce 3D fat-water separated images and PDFF maps. The FB-MRI radial data will be transferred to a separate workstation for custom reconstruction of 3D fat-water-separated images and PDFF maps and analysis. Visceral adipose tissue PDFF values will be directly measured from regions of interest.
During the procedure (MRI)
Fetal Liver PDFF
Time Frame: During the procedure (MRI)
MRI data will be reconstructed by Siemens scanner software to produce 3D fat-water separated images. The distribution/extent of hepatic fat will be manually delineated/drawn on the 3D MRI images and PDFF maps. This work will be performed by PI Strobel with validation from PI Wu.
During the procedure (MRI)

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Fetal Subcutaneous Tissue Volume
Time Frame: During the procedure (MRI)
MRI data will be reconstructed by Siemens scanner software to produce 3D fat-water separated images and PDFF maps. The FB-MRI radial data will be transferred to a separate workstation for custom reconstruction of 3D fat-water-separated images and PDFF maps and analysis. Subcutaneous adipose tissue PDFF values will be directly measured from regions of interest.
During the procedure (MRI)
Maternal Subcutaneous Tissue Volume
Time Frame: During the procedure (MRI)
MRI data will be reconstructed by Siemens scanner software to produce 3D fat-water separated images. The distribution/extent of subcutaneous fat will be manually delineated/drawn on the 3D MRI images and PDFF maps and used to calculate volume of subcutaneous adipose tissue. This work will be performed by PI Strobel with validation from PI Wu.
During the procedure (MRI)
Maternal Hepatic Fat PDFF
Time Frame: During the procedure (MRI)
MRI data will be reconstructed by Siemens scanner software to produce 3D fat-water separated images and PDFF maps. The FB-MRI radial data will be transferred to a separate workstation for custom reconstruction of 3D fat-water-separated images and PDFF maps and analysis. Hepatic adipose tissue PDFF values will be directly measured from regions of interest.
During the procedure (MRI)

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

August 17, 2020

Primary Completion (Actual)

September 27, 2021

Study Completion (Actual)

May 18, 2022

Study Registration Dates

First Submitted

August 3, 2020

First Submitted That Met QC Criteria

August 7, 2020

First Posted (Actual)

August 11, 2020

Study Record Updates

Last Update Posted (Actual)

August 30, 2023

Last Update Submitted That Met QC Criteria

October 19, 2022

Last Verified

October 1, 2022

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

UNDECIDED

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Pregnancy Related

Clinical Trials on 3T "Free-Breathing" Fetal Magnetic Resonance Imaging

3
Subscribe