Volume Responsiveness By Ultrasound Of Carotid Blood Flow In Patients With Cardiogenic Shock

March 7, 2022 updated by: Nehal Yousri, Alexandria University

Assessment Of Volume Responsiveness By Ultrasound Parameters Of Carotid Blood Flow In Patients With Cardiogenic Shock

Resuscitation of critically ill patients has changed since the advent of goal directed therapy. Today, practitioners providing fluid resuscitation are attentive of the danger associated with volume depletion while being aware of the morbidity of volume overload. Fluid resuscitation must be rapid, precise, and individually tailored to each patient based on reliable data obtained by various means inside ICU setting.

There is no non-invasive method that can reliably and accurately identify fluid responsiveness. As such, in patients with undifferentiated shock, treatment often involves empiric fluid administration, in the hopes that volume expansion will increase preload, which will then serve to increase cardiac output (CO). However, for patients on the flat portion of the Starling curve, aggressive fluid administration results in no appreciable increase in CO and may be detrimental to hemodynamically unstable patients.

Study Overview

Detailed Description

Study location and population: Alexandria Main University Hospitals ICU, Alexandria Egypt. Approval of the Medical Ethics Committee of Alexandria Faculty of Medicine was obtained before the start of the study. Sample size was estimated using PASS version 20 program. The minimal hypothesized total sample size of 40 cardiogenic shock patients of both sexes is needed to determine the sensitivity and specificity of cardiac output measurement using either bedside ultrasound on carotid artery and TTE (Standard) while assessing volume responsiveness with 95 % confidence level and 80 % power using z-test.

Study procedures: All enrolled patients were subjected on admission to thorough history taking including age, sex, date of ICU admission and preexisting underlying disease (Diabetes Mellitus, hypertension), presence of sepsis, smoking, analgesic abuse. Full clinical examination. Severity of illness was assessed by Acute Physiological And Chronic Health Evaluation-ΙΙ (APACHE ΙΙ). ICU length of stay (LOS) and final outcome were recorded.

Noninvasive measurement of Systolic arterial pressure, diastolic arterial pressure (DAP), mean arterial pressure (MAP), heart rate (HR), respiratory rate (RR), and temperature were recorded upon admission and after PLR.

Fluid challenge: A PLR was performed, Transferring a patient to the passive leg raising (PLR) position (in which the lower limbs are elevated at 45_ while the trunk is lying supine) transfers venous blood from the legs to the intrathoracic compartment and increases cardiac preload around 300-500 mL.

Carotid ultrasonography and Echocardiogram: Stroke volume is the amount of blood ejected from the ventricle with each cardiac cycle. It can be readily calculated by subtracting the end-systolic volume from the end-diastolic volume. Multiplying the stroke volume by the heart rate yields the cardiac output, typically reported in liters per minute.

Stroke volume can be estimated by using a combination of 2D and Doppler imaging. HR was recorded before and after PLR test then CO is calculated by equation of:

CO = π × (LVOTd)2/4 × VTI LVOT × HR Percent change is [(cardiac output after passive leg raising - cardiac output before passive leg raising)/cardiac output after passive leg raising] × 100%. A greater than 10% increase in cardiac output would predict volume responsiveness and constitute an indication for a 500-mL fluid bolus. Measurements were repeated as needed, and fluid resuscitation continued until no further response to passive leg raising was noted.

Changes (%) =100 X (post-FC value - baseline value)/ baseline value

Patients were divided into 2 groups:

Responder is defined by an increase of 10% or more. Non responder is less than 10%. The Common Carotid artery is a large superficial accessible artery so carotid doppler flow imaging would be simple, non-invasive method to assess volume responsiveness. Use of Velocity Time Integral of flow through the Common Carotid artery (Carotid VTI) and Passive Leg Raising (PLR) described as a marker of volume responsiveness in hemodynamically unstable patients.

Carotid flow is measured during the passive leg raising maneuver by using a linear array transducer positioned in the long axis over the CCA, after procuring a longitudinal view of the common carotid artery, pulsed Doppler analysis at 2 cm from the bifurcation was performed. The CCA diameter is measured from opposing points of the vessel's intimal wall, with the velocity time integral determined automatically using spectral Doppler envelopes and the sample obtained from the center of the artery. Common carotid artery blood flow per minute is calculated by the equation CBF= π × (CCA diameter)2/4 × CCA velocity time integral × heart rate This parameter is measured both before and after the passive leg raising to determine the percent change in CCA blood flow. An increase in CCA flow with passive leg raising only occurs in patients with shock, and an increase of greater than 20% is highly predictive of volume responsiveness.

HR is recorded before and after PLR then CBF was calculated by the following equation:

CBF = π × (CCA diameter)2/4 × VTI CCA × HR

Patients was divided into 2 groups:

Responder is defined by an increase of 20% or more. Non responder is less than 20%. After fluid challenge we remeasured Systolic arterial pressure, diastolic arterial pressure (DAP), mean arterial pressure (MAP), heart rate (HR) to assess clinical response to the fluid challenge.

Study Type

Observational

Enrollment (Actual)

40

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

      • Alexandria, Egypt
        • Faculty of Medicine, Alexandria University

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 75 years (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Sampling Method

Probability Sample

Study Population

40 cardiogenic shock patients of both gender admitted to intensive critical care units.

Approval of the Medical Ethics Committee of Alexandria Faculty of Medicine. An informed consent was taken from the patients' next of kin before their enrollment in the study.

Description

Inclusion Criteria:

  • Age > 18 Y.
  • Cardiogenic shock.

Exclusion Criteria:

  • Age < 18 Y.
  • Pregnant females.
  • All types of shock state other than cardiogenic.
  • Peripheral arterial disease.
  • Non consenting patients.
  • Unable to tolerate passive leg raise (PLR).
  • Common carotid artery stenosis greater than 50 % (systolic peak velocity >182 cm/s and/or diastolic velocity >30 cm/s by Doppler ultrasound.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Observational Models: Cohort
  • Time Perspectives: Prospective

Cohorts and Interventions

Group / Cohort
Intervention / Treatment
Cardiogenic Shock Patients

Cardiac output and Carotid Blood flow is measured before & after PLR test, then percent change is calculated were increase in cardiac output with 10 % or more is considered volume responder.

Measurements can be repeated as needed, and fluid resuscitation continues until no further response to passive leg raising is noted.

VTI-LVOT was measured by echo by placing the pulsed wave Doppler sample gate in the LVOT diameter in apical-5-chamber window. VTI-LVOT was obtained by manually tracing the Doppler velocity spectrum. LVOT velocity time integral was recorded before and after PLR test within 2 minutes. Carotid blood flow was measured by using two-dimensional image, the optimal image of the long-axis view was obtained at the common carotid artery. The sample volume was placed on the center of the lumen, 2 cm proximal to the bulb, and a pulsed wave Doppler examination,The angle correction cursor was placed parallel to the direction of blood flow. A PLR will be performed in 2 sequential steps, first step patient is seated in the semi recumbent position (45°) then using an automatic bed elevation technique, the lower limbs will be then raised to a 45° angle while the patient's trunk will be lowered in supine position. Thus, the angle between the trunk and the lower limbs will remain unchanged (135°).

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Percent Change in Carotid Blood Flow after PLR test.
Time Frame: Change in carotid blood flow within 2 minutes after PLR.
The common carotid artery will be scanned in transverse and longitudinal planes. Spectral Doppler tracings will be then obtained by placing a 0.5 mm sample gate through the center of vessel, within 2-3 cm proximal to the carotid bulb in the longitudinal plane, in accordance to standard guidelines. The angle correction cursor will be placed parallel to the direction of blood flow. A PLR will be performed in 2 sequential steps, first step patient is seated in the semi recumbent position (45°) then using an automatic bed elevation technique, the lower limbs will be then raised to a 45° angle while the patient's trunk will be lowered in supine position. Thus, the angle between the trunk and the lower limbs will remain unchanged (135°). Percent change is [(cardiac output after passive leg raising - carotid blood flow before passive leg raising)/carotid blood flow after passive leg raising] × 100%. A greater than 20% increase in carotid blood flow would predict volume responsiveness.
Change in carotid blood flow within 2 minutes after PLR.
Percent Change in Cardiac Output after PLR test.
Time Frame: Change in cardiac output within 2 minutes after PLR.
Cardiac output is measured using pulsed Doppler imaging where phase-array transducer positioned just proximal to the aortic valve. The velocity time integral is measured by tracing the modal velocity then stroke volume is calculated.CO is SV multiplied by HR. A PLR will be performed in 2 sequential steps, first step patient is seated in the semi recumbent position (45°) then using an automatic bed elevation technique, the lower limbs will be then raised to a 45° angle while the patient's trunk will be lowered in supine position. Thus, the angle between the trunk and the lower limbs will remain unchanged (135°). Percent change is [(cardiac output after passive leg raising - cardiac output before passive leg raising)/cardiac output after passive leg raising] × 100%. A greater than 10% increase in cardiac output would predict volume responsiveness.
Change in cardiac output within 2 minutes after PLR.
Blood Pressure before and after PLR test.
Time Frame: Change in blood pressure 1 minute after PLR.
Measure Blood Pressure and record reading in mmHg before and after PLR test.
Change in blood pressure 1 minute after PLR.
Heart rate before and after PLR test.
Time Frame: Change in heart rate 1 minute after PLR.
Record Heart Rate readings on monitor in BPM (beat per minute) before and after PLR test.
Change in heart rate 1 minute after PLR.

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Study Director: Ahmed M ElMenshawy, Lecturer, University of Alexandria

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

March 25, 2020

Primary Completion (Actual)

February 20, 2021

Study Completion (Actual)

March 20, 2021

Study Registration Dates

First Submitted

January 23, 2022

First Submitted That Met QC Criteria

March 7, 2022

First Posted (Actual)

March 8, 2022

Study Record Updates

Last Update Posted (Actual)

March 8, 2022

Last Update Submitted That Met QC Criteria

March 7, 2022

Last Verified

March 1, 2022

More Information

Terms related to this study

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Cardiogenic Shock

3
Subscribe