Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function

Thiago Thomaz Mafort, Rogério Rufino, Cláudia Henrique Costa, Agnaldo José Lopes, Thiago Thomaz Mafort, Rogério Rufino, Cláudia Henrique Costa, Agnaldo José Lopes

Abstract

Obesity is currently one of the major epidemics of this millennium and affects individuals throughout the world. It causes multiple systemic complications, some of which result in severe impairment of organs and tissues. These complications involve mechanical changes caused by the accumulation of adipose tissue and the numerous cytokines produced by adipocytes. Obesity also significantly interferes with respiratory function by decreasing lung volume, particularly the expiratory reserve volume and functional residual capacity. Because of the ineffectiveness of the respiratory muscles, strength and resistance may be reduced. All these factors lead to inspiratory overload, which increases respiratory effort, oxygen consumption, and respiratory energy expenditure. It is noteworthy that patterns of body fat distribution significantly influence the function of the respiratory system, likely via the direct mechanical effect of fat accumulation in the chest and abdominal regions. Weight loss caused by various types of treatment, including low-calorie diet, intragastric balloon, and bariatric surgery, significantly improves lung function and metabolic syndrome and reduces body mass index. Despite advances in the knowledge of pulmonary and systemic complications associated with obesity, longitudinal randomized studies are needed to assess the impact of weight loss on metabolic syndrome and lung function.

Keywords: Lung function; Metabolic syndrome; Obesity.

Figures

Fig. 1
Fig. 1
Pulmonary function abnormalities resulting from obesity

References

    1. World Health Organization, WHO, Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation (WHO Technical Report Series 894) at . Accessed 10 Feb 2016.
    1. Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord. 2015;13:423–44. doi: 10.1089/met.2015.0095.
    1. Brazilian Association for the Study of Obesity and Metabolic Syndrome, ABESO, Brazilian Obesity Guidelines 2009/2010 at . Accessed 22 Jan 2016.
    1. de Oliveira ML, Santos LM, da Silva EN. Direct healthcare cost of obesity in Brazil: an application of the cost-of-illness method from the perspective of the public health system in 2011. PLoS One. 2015;10:e0121160. doi: 10.1371/journal.pone.0121160.
    1. Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16:378–400. doi: 10.3390/ijms16010378.
    1. Hodgson LE, Murphy PB, Hart N. Respiratory management of the obese patient undergoing surgery. J Thorac Dis. 2015;7:943–52.
    1. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW., Jr Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341:1097–105. doi: 10.1056/NEJM199910073411501.
    1. Redinger RN. The pathophysiology of obesity and its clinical manifestations. Gastroenterol Hepatol. 2007;3:856–63.
    1. Masmiquel L, Leiter LA, Vidal J, Bain S, Petrie J, Franek E, et al. LEADER 5: prevalence and cardiometabolic impact of obesity in cardiovascular high-risk patients with type 2 diabetes mellitus: baseline global data from the LEADER trial. Cardiovasc Diabetol. 2016;15:29. doi: 10.1186/s12933-016-0341-5.
    1. Benotti P, Wood GC, Argyropoulos G, Pack A, Keenan BT, Gao X, et al. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease in patients with severe obesity. Obesity (Silver Spring) 2016;24:871–7. doi: 10.1002/oby.21409.
    1. Kairaitis K, Foster S, Amatoury J, Verma M, Wheatley JR, Amis TC. Pharyngeal mucosal wall folds in subjects with obstructive sleep apnea. J Appl Physiol. 2015;118(6):707–15. doi: 10.1152/japplphysiol.00691.2014.
    1. Badran M, Yassin BA, Fox N, Laher I, Ayas N. Epidemiology of sleep disturbances and cardiovascular consequences. Can J Cardiol. 2015;31:873–9. doi: 10.1016/j.cjca.2015.03.011.
    1. Guerra S, Wright AL, Morgan WJ, Sherrill DL, Holberg CJ, Martinez FD. Persistence of asthma symptoms during adolescence: role of obesity and age at the onset of puberty. Am J Respir Crit Care Med. 2004;170:78–85. doi: 10.1164/rccm.200309-1224OC.
    1. Lu Y, Van Bever HP, Lim TK, Kuan WS, Goh DY, Mahadevan M, et al. Obesity, asthma prevalence and IL-4: Roles of inflammatory cytokines, adiponectin and neuropeptide Y. Pediatr Allergy Immunol. 2015;26:530–6. doi: 10.1111/pai.12428.
    1. Ulrik CS. Asthma symptoms in obese adults: the challenge of achieving asthma control. Expert Rev Clin Pharmacol. 2016;9(1):5–8. doi: 10.1586/17512433.2016.1093415.
    1. Cortés-Télles A, Torre-Bouscoulet L, Silva-Cerón M, Mejía-Alfaro R, Syed N, Zavorsky GS, et al. Combined effects of mild-to-moderate obesity and asthma on physiological and sensory responses to exercise. Respir Med. 2015;109:1397–403. doi: 10.1016/j.rmed.2015.09.010.
    1. Vozoris NT1, O’Donnell DE. Prevalence, risk factors, activity limitation and health care utilization of an obese, population-based sample with chronic obstructive pulmonary disease. Can Respir J. 2012;19(3):e18–24. doi: 10.1155/2012/732618.
    1. Hanson C, Rutten EP, Wouters EF, Rennard S. Influence of diet and obesity on COPD development and outcomes. Int J Chron Obstruct Pulmon Dis. 2014;9:723–33. doi: 10.2147/COPD.S50111.
    1. Beltrán-Sánchez H, Harhay MO, Harhay MM, McElligott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J Am Coll Cardiol. 2013;62:697–703. doi: 10.1016/j.jacc.2013.05.064.
    1. Baffi CW, Wood L, Winnica D, Strollo PJ, Gladwin MT, Que LG, et al. Metabolic syndrome and the lung. Chest. 2016. [Epub ahead of print].
    1. Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin North Am. 2014;43:1–23. doi: 10.1016/j.ecl.2013.09.009.
    1. Lee H, Kim SR, Oh Y, Cho SH, Schleimer RP, Lee YC. Targeting insulin-like growth factor-I and insulin-like growth factor-binding protein-3 signaling pathways. A novel therapeutic approach for asthma. Am J Respir Cell Mol Biol. 2014;50:667–77. doi: 10.1165/rcmb.2013-0397TR.
    1. Segula D. Complications of obesity in adults: a short review of the literature. Malawi Med J. 2014;26:20–4.
    1. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12:3117–32. doi: 10.3390/ijms12053117.
    1. Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB. Adipose tissue as an endocrine: organ: from theory to practice. J Pediatr. 2007;83(Suppl. 5):192–203. doi: 10.1590/S0021-75572007000700011.
    1. Möller K, Ostermann AI, Rund K, Thoms S, Blume C, Stahl F, et al. Influence of weight reduction on blood levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and oxylipins in obese subjects. Prostaglandins Leukot Essent Fatty Acids. 2016;106:39–49. doi: 10.1016/j.plefa.2015.12.001.
    1. Stienstra R, Tack CJ, Kanneganti TD, Joosten LA, Netea MG. The inflammasome puts obesity in the danger zone. Cell Metabol. 2012;15:10–8. doi: 10.1016/j.cmet.2011.10.011.
    1. Naugler WE, Karin M. The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med. 2008;14:109–19. doi: 10.1016/j.molmed.2007.12.007.
    1. Pedersen JM, Budtz-Jørgensen E, Mortensen EL, Bruunsgaard H, Osler M, Sørensen TI, et al. Late midlife C-reactive protein and interleukin-6 in middle aged danish men in relation to body size history within and across generations. Obesity. 2016;24:461–8. doi: 10.1002/oby.21311.
    1. Stenlöf K, Wernstedt I, Fjällman T, Wallenius V, Wallenius K, Jansson JO. Interleukin-6 levels in the central nervous system are negatively correlated with fat mass in overweight/obese subjects. J Clin Endocrinol Metab. 2003;88:4379–83. doi: 10.1210/jc.2002-021733.
    1. Drougard A, Fournel A, Valet P, Knauf C. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Front Neurosci. 2015;9:56. doi: 10.3389/fnins.2015.00056.
    1. Amirkhizi F, Siassi F, Minaie S, Djalali M, Rahimi A, Chamari M. Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women. ARYA Atheroscler. 2007;2:189–92.
    1. Ozata M, Mergen M, Oktenli C, Aydin A, Sanisoglu SY, Bolu E, et al. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. 2002;35:627–31. doi: 10.1016/S0009-9120(02)00363-6.
    1. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94:206–18. doi: 10.1016/j.physbeh.2007.10.010.
    1. Dhar-Mascareno M, Ramirez SN, Rozenberg I, Rouille Y, Kral JG, Mascareno EJ. Hexim1, a novel regulator of leptin function, modulates obesity and glucose disposal. Mol Endocrinol. 2016;30:314–24. doi: 10.1210/me.2015-1211.
    1. Hukshorn CJ, Lindeman JH, Toet KH, Saris WH, Eilers PH, Westerterp-Plantenga MS, et al. Leptin and the proinflammatory state associated with human obesity. J Clin Endocrinol Metab. 2004;89:1773–8. doi: 10.1210/jc.2003-030803.
    1. Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci. 2010;1212:E1–19. doi: 10.1111/j.1749-6632.2010.05875.x.
    1. Ouedraogo R, Gong Y, Berzins B, Wu X, Mahadev K, Hough K, et al. Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo. J Clin Invest. 2007;117:1718–26. doi: 10.1172/JCI29623.
    1. Fujita K, Nishizawa H, Funahashi T, Shimomura I, Shimabukuro M. Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circ J. 2006;70:1437–42. doi: 10.1253/circj.70.1437.
    1. Chen Y, Pitzer AL, Li X, Li PL, Wang L, Zhang Y. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: role of HMGB1. J Cell Mol Med. 2015;19:2715–27. doi: 10.1111/jcmm.12657.
    1. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 2007;178:1748–58. doi: 10.4049/jimmunol.178.3.1748.
    1. Kawanami D, Maemura K, Takeda N, Harada T, Nojiri T, Imai Y, et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun. 2004;314:415–9. doi: 10.1016/j.bbrc.2003.12.104.
    1. Pihl E, Zilmer K, Kullisaar T, Kairane C, Mägi A, Zilmer M. Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes. Int J Obes. 2006;30:141–6. doi: 10.1038/sj.ijo.0803068.
    1. Okla M, Kang I, da Kim M, Gourineni V, Shay N, Gu L, et al. Ellagic acid modulates lipid accumulation in primary human adipocytes and human hepatoma Huh7 cells via discrete mechanisms. J Nutr Biochem. 2015;26:82–90. doi: 10.1016/j.jnutbio.2014.09.010.
    1. Brazzale DJ, Pretto JJ, Schachter LM. Optimizing respiratory function assessments to elucidate the impact of obesity on respiratory health. Respirology. 2015;20:715–21. doi: 10.1111/resp.12563.
    1. Steier J, Lunt A, Hart N, Polkey MI, Moxham J. Observational study of the effect of obesity on lung volumes. Thorax. 2014;69:752–9. doi: 10.1136/thoraxjnl-2014-205148.
    1. Koo P, Gartman EJ, Sethi JM, McCool FD. Physiology in Medicine: physiological basis of diaphragmatic dysfunction with abdominal hernias-implications for therapy. Appl Physiol. 2015;118:142–7. doi: 10.1152/japplphysiol.00276.2014.
    1. Unterborn J. Pulmonary function testing in obesity, pregnancy, and extremes of body habitus. Clin Chest Med. 2001;22:759–67. doi: 10.1016/S0272-5231(05)70064-2.
    1. Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol. 2010;108:206–11. doi: 10.1152/japplphysiol.00694.2009.
    1. de Lucas RP, Rodríguez González-Moro JM, Rubio SY. Obesity and lung function. Arch Bronconeumol. 2004;40(Suppl. 5):27–31.
    1. Rasslan Z, Stirbulov R, Lima CA, Saad JR. Lung function and obesity. Rev Bras Clínica Médica. 2009;7:36–9.
    1. Jones RL, Nzekwu MM. The effects of body mass index on lung volumes. Chest. 2006;130:827–33. doi: 10.1378/chest.130.3.827.
    1. Mafort TT, Madeira E, Madeira M, Guedes EP, Moreira RO, de Mendonça LM, et al. Intragastric balloon for the treatment of obesity: evaluation of pulmonary function over a 3-month period. Lung. 2012;190:671–6. doi: 10.1007/s00408-012-9415-7.
    1. Melo LC, Silva MA, Calles ACN. Obesity and lung function: a systematic review. Einstein. 2014;12:120–5. doi: 10.1590/S1679-45082014RW2691.
    1. Carpio C, Santiago A, de García Lorenzo A, Alvarez-Sala R. Changes in lung function testing associated with obesity. Nutr Hosp. 2014;30:1054–62.
    1. Thyagarajan B, Jacobs DR, Jr, Apostol GG, Smith LJ, Jensen RL, Crapo RO, et al. Longitudinal association of body mass index with lung function: the CARDIA study. Respir Res. 2008;9:31. doi: 10.1186/1465-9921-9-31.
    1. Pellegrino R, Gobbi A, Antonelli A, Torchio R, Gulotta C, Pellegrino GM, et al. Ventilation heterogeneity in obesity. J Appl Physiol. 2014;116:1175–81. doi: 10.1152/japplphysiol.01339.2013.
    1. Mahadev S, Salome CM, Berend N, King GG. The effect of low lung volume on airway function in obesity. Respir Physiol Neurobiol. 2013;188:192–9. doi: 10.1016/j.resp.2013.05.021.
    1. Manuel AR, Hart N, Stradling JR. Correlates of obesity-related chronic ventilatory failure. BMJ Open Respir Res. 2016;3(1):e000110. doi: 10.1136/bmjresp-2015-000110.
    1. Chlif M, Keochkerian D, Choquet D, Vaidie A, Ahmaidi S. Effects of obesity on breathing pattern, ventilatory neural drive and mechanics. Respir Physiol Neurobiol. 2009;168:198–202. doi: 10.1016/j.resp.2009.06.012.
    1. Arena R, Cahalin LP. Evaluation of cardiorespiratory fitness and respiratory muscle function in the obese population. Prog Cardiovasc Dis. 2014;56:457–64. doi: 10.1016/j.pcad.2013.08.001.
    1. Rivas E, Arismendi E, Agustí A, Sanchez M, Delgado S, Gistau C, et al. Ventilation/perfusion distribution abnormalities in morbidly obese subjects before and after bariatric surgery. Chest. 2015;147:1127–34. doi: 10.1378/chest.14-1749.
    1. Saydain G, Beck KC, Decker PA, Cowl CT, Scanlon PD. Clinical significance of elevated diffusion capacity. Chest. 2004;125:446–52. doi: 10.1378/chest.125.2.446.
    1. Mafort TT, Madeira E, Madeira M, Guedes EP, Moreira RO, de Mendonça LM, et al. Six-month intragastric balloon treatment for obesity improves lung function, body composition, and metabolic syndrome. Obes Surg. 2014;24:232–40. doi: 10.1007/s11695-013-1061-5.
    1. Dixon AE, Subramanian M, DeSarno M, Black K, Lane L, Holguin F. A pilot randomized controlled trial of pioglitazone for the treatment of poorly controlled asthma in obesity. Respir Res. 2015;16:143. doi: 10.1186/s12931-015-0303-6.
    1. Pakhale S, Baron J, Dent R, Vandemheen K, Aaron SD. Effects of weight loss on airway responsiveness in obese adults with asthma: does weight loss lead to reversibility of asthma? Chest. 2015;147:1582–90. doi: 10.1378/chest.14-3105.
    1. Boulet LP, Turcotte H, Martin J, Poirier P. Effect of bariatric surgery on airway response and lung function in obese subjects with asthma. Respir Med. 2012;106:651–60. doi: 10.1016/j.rmed.2011.12.012.
    1. Torchio R, Gobbi A, Gulotta C, Dellacà R, Tinivella M, Hyatt RE, et al. Mechanical effects of obesity on airway responsiveness in otherwise healthy humans. J Appl Physiol. 2009;107:408–16. doi: 10.1152/japplphysiol.00083.2009.
    1. Brumpton BM, Leivseth L, Romundstad PR, Langhammer A, Chen Y, Camargo CA, Jr, et al. The joint association of anxiety, depression and obesity with incident asthma in adults: the HUNT study. Int J Epidemiol. 2013;42:1455–63. doi: 10.1093/ije/dyt151.
    1. Hjellvik V, Tverdal A, Furu K. Body mass index as predictor for asthma: a cohort study of 118,723 males and females. Eur Respir J. 2010;35:1235–42. doi: 10.1183/09031936.00192408.
    1. Groth SW, Rhee H, Kitzman H. Relationships among obesity, physical activity and sedentary behavior in young adolescents with and without lifetime asthma. J Asthma. 2016;53:19–24. doi: 10.3109/02770903.2015.1063646.
    1. Yawn BP, Rank MA, Bertram SL, Wollan PC. Obesity, low levels of physical activity and smoking present opportunities for primary care asthma interventions: an analysis of baseline data from The Asthma Tools Study. NPJ Prim Care Respir Med. 2015;25:15058. doi: 10.1038/npjpcrm.2015.58.
    1. Schatz M, Zeiger RS, Yang SJ, Chen W, Sajjan S, Allen-Ramey F, et al. Prospective study on the relationship of obesity to asthma impairment and risk. J Allergy Clin Immunol Pract. 2015;3:560–5. doi: 10.1016/j.jaip.2015.03.017.
    1. de Lima Azambuja R, da Costa Santos Azambuja LS, Costa C, Rufino R. Adiponectin in asthma and obesity: protective agent or risk factor for more severe disease? Lung. 2015;193:749–55. doi: 10.1007/s00408-015-9793-8.
    1. Ballantyne D, Scott H, MacDonald-Wicks L, Gibson PG, Wood L. Resistin is a predictor of asthma risk and resistin: adiponectin ratio is a negative predictor of lung function in asthma. Clin Exp Allergy. 2016. [Epub ahead of print].
    1. Heinzmann-Filho JP, Vendrusculo FM, Woszezenki CT, Piva TC, Santos AN, Barcellos AB, et al. Inspiratory muscle function in asthmatic and healthy subjects: influence of age, nutrition and physical activity. J Asthma. 2016. [Epub ahead of print].
    1. Charron CB, Pakhalé S. The role of airway hyperresponsiveness measured by methacholine challenge test in defining asthma severity in asthma-obesity syndrome. Curr Opin Allergy Clin Immunol. 2016. [Epub ahead of print].
    1. Bates JH. Physiological mechanisms of airways hyperresponsiveness in obese asthma. Am J Respir Cell Mol Biol. 2016. [Epub ahead of print].
    1. Cheung AS, de Rooy C, Hoermann R, Gianatti EJ, Hamilton EJ, Roff G, et al. Correlation of visceral adipose tissue measured by Lunar Prodigy dual x-ray absorptiometry with MRI and CT in older men. Int J Obes. 2016. [Epub ahead of print].
    1. Rondanelli M, Klersy C, Perna S, Faliva MA, Montorfano G, Roderi P, et al. Effects of two-months balanced diet in metabolically healthy obesity: lipid correlations with gender and BMI-related differences. Lipids Health Dis. 2015;14:139. doi: 10.1186/s12944-015-0131-1.
    1. Tarnoki AD, Tarnoki DL, Medda E, Cotichini R, Stazi MA, Fagnani C, et al. Bioimpedance analysis of body composition in an international twin cohort. Obes Res Clin Pract. 2014;8:e201–98. doi: 10.1016/j.orcp.2012.12.002.
    1. Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr Clin Pract. 2015;30:180–93. doi: 10.1177/0884533614568155.
    1. Wang H, Chen YE, Eitzman DT. Imaging body fat: techniques and cardiometabolic implications. Arterioscler Thromb Vasc Biol. 2014;34:2217–23. doi: 10.1161/ATVBAHA.114.303036.
    1. Steele RM, Finucane FM, Griffin SJ, Wareham NJ, Ekelund U. Obesity is associated with altered lung function independently of physical activity and fitness. Obesity. 2009;17:578–84. doi: 10.1038/oby.2008.584.
    1. Enzi G, Gasparo M, Biondetti PR, Fiore D, Semisa M, Zurlo F. Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computer tomography. Am J Clin Nutr. 1986;44:739–46.
    1. Bernhardt V, Wood HE, Moran RB, Babb TG. Dyspnea on exertion in obese men. Respir Physiol Neurobiol. 2013;185:241–8. doi: 10.1016/j.resp.2012.10.007.
    1. Bernhardt V, Stickford JL, Bhammar DM, Babb TG. Aerobic exercise training without weight loss reduces dyspnea on exertion in obese women. Respir Physiol Neurobiol. 2016;221:64–70. doi: 10.1016/j.resp.2015.11.004.
    1. Salvadego D, Sartorio A, Agosti F, Tringali G, Patrizi A, Mauro AL, et al. Acute respiratory muscle unloading by normoxic helium-O2 breathing reduces the O2 cost of cycling and perceived exertion in obese adolescents. Eur J Appl Physiol. 2015;115:99–109. doi: 10.1007/s00421-014-2993-8.
    1. Gibson N, Johnston K, Bear N, Stick S, Logie K, Hall GL. Expiratory flow limitation and breathing strategies in overweight adolescents during submaximal exercise. Int J Obes. 2014;38:22–6. doi: 10.1038/ijo.2013.137.
    1. Hothi SS, Tan DK, Partridge G, Tan LB. Is low VO2max/kg in obese heart failure patients indicative of cardiac dysfunction? Int J Cardiol. 2015;184:755–62. doi: 10.1016/j.ijcard.2015.02.018.
    1. Carpio C, Villasante C, Galera R, Romero D, de Cos A, Hernanz A, et al. Systemic inflammation and higher perception of dyspnea mimicking asthma in obese subjects. J Allergy Clin Immunol. 2016;137:718–26. doi: 10.1016/j.jaci.2015.11.010.
    1. Duarte RL, Magalhães-da-Silveira FJ. Factors predictive of obstructive sleep apnea in patients undergoing pre-operative evaluation for bariatric surgery and referred to a sleep laboratory for polysomnography. J Bras Pneumol. 2015;41:440–8. doi: 10.1590/S1806-37132015000000027.
    1. Pinto JA, Ribeiro DK, Cavallini AF, Duarte C, Freitas GS. Comorbidities associated with obstructive sleep apnea: a retrospective study. Int Arch Otorhinolaryngol. 2016;20:145–50. doi: 10.1055/s-0036-1579546.
    1. Aurora RN, Punjabi NM. Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. Lancet Respir Med. 2013;1:329–38. doi: 10.1016/S2213-2600(13)70039-0.
    1. Peromaa-Haavisto P, Tuomilehto H, Kössi J, Virtanen J, Luostarinen M, Pihlajamäki J, et al. Prevalence of obstructive sleep apnoea among patients admitted for bariatric surgery: a prospective multicentre trial. Obes Surg. 2015. [Epub ahead of print].
    1. Ren SL, Li YR, Jen R, Wu JX1, Ye JY. Effects of altered intra-abdominal pressure on the upper airway collapsibility in a porcine model. Chin Med J. 2015;128:3204–10. doi: 10.4103/0366-6999.150111.
    1. Pierce AM, Brown LK. Obesity hypoventilation syndrome: current theories of pathogenesis. Curr Opin Pulm Med. 2015;21:557–62. doi: 10.1097/MCP.0000000000000210.
    1. Gil JS, Drager LF, Guerra-Riccio GM, Mostarda C, Irigoyen MC, Costa-Hong V, et al. The impact of metabolic syndrome on metabolic, pro-inflammatory and prothrombotic markers according to the presence of high blood pressure criterion. Clinics (Sao Paulo) 2013;68:1495–501. doi: 10.6061/clinics/2013(12)04.
    1. Bozkurt NC, Beysel S, Karbek B, Unsal İO, Cakir E, Delibasi T. Visceral obesity mediates the association between metabolic syndrome and obstructive sleep apnea syndrome. Metab Syndr Relat Disord. 2016;14:217–21. doi: 10.1089/met.2015.0086.
    1. Chau EH, Lam D, Wong J, Mokhlesi B, Chung F. Obesity hypoventilation syndrome: a review of epidemiology, pathophysiology, and perioperative considerations. Anesthesiology. 2012;117:188–205. doi: 10.1097/ALN.0b013e31825add60.
    1. BaHammam AS. Prevalence, clinical characteristics, and predictors of obesity hypoventilation syndrome in a large sample of Saudi patients with obstructive sleep apnea. Saudi Med J. 2015;36:181–9. doi: 10.15537/smj.2015.2.9991.
    1. Shetty S, Parthasarathy S. Obesity hypoventilation syndrome. Curr Pulmonol Rep. 2015;4:42–55. doi: 10.1007/s13665-015-0108-6.
    1. BaHammam AS, Pandi-Perumal SR, Piper A, Bahammam SA, Almeneessier AS, Olaish AH, et al. Gender differences in patients with obesity hypoventilation syndrome. J Sleep Res. 2016. [Epub ahead of print].
    1. Jehan S, Masters-Isarilov A, Salifu I, Zizi F, Jean-Louis G, Pandi-Perumal SR, et al. Sleep disorders in postmenopausal women. J Sleep Disord Ther. 2015;4:1000212.
    1. Thomas PS, Cowen ER, Hulands G, Milledge JS. Respiratory function in the morbidly obese before and after weight loss. Thorax. 1989;44:382–6. doi: 10.1136/thx.44.5.382.
    1. Littleton SW. Impact of obesity on respiratory function. Respirology. 2012;17:43–9. doi: 10.1111/j.1440-1843.2011.02096.x.
    1. Hakala K, Mustajoki P, Aittomäki J, Sovijärvi AR. Effect of weight loss and body position on pulmonary function and gas exchange abnormalities in morbid obesity. Int J Obes Relat Metab Disord. 1995;19:343–6.
    1. Babb TG, Wyrick BL, Chase PJ, Delorey DS, Rodder SG, Feng MY, et al. Weight loss via diet and exercise improves exercise breathing mechanics in obese men. Chest. 2011;140:454–60. doi: 10.1378/chest.10-1088.
    1. Weiner P, Waizman J, Weiner M, Rabner M, Magadle R, Zamir D. Influence of excessive weight loss after gastroplasty for morbid obesity on respiratory muscle performance. Thorax. 1998;53:39–42. doi: 10.1136/thx.53.1.39.
    1. Bernhardt V, Babb TG. Weight loss reduces dyspnea on exertion in obese women. Respir Physiol Neurobiol. 2014;204:86–92. doi: 10.1016/j.resp.2014.09.004.
    1. Ulrik CS. Asthma and obesity: is weight reduction the key to achieve asthma control? Curr Opin Pulm Med. 2016;22:69–73. doi: 10.1097/MCP.0000000000000226.
    1. Al-Alwan A, Bates JH, Chapman DG, Kaminsky DA, DeSarno MJ, Irvin CG, et al. The nonallergic asthma of obesity. A matter of distal lung compliance. Am J Respir Crit Care Med. 2014;189:1494–502. doi: 10.1164/rccm.201401-0178OC.
    1. Hewitt S, Humerfelt S, Søvik TT, Aasheim ET, Risstad H, Kristinsson J, et al. Long-term improvements in pulmonary function 5 years after bariatric surgery. Obes Surg. 2014;24:705–11. doi: 10.1007/s11695-013-1159-9.
    1. Dias-Júnior SA, Reis M, de Carvalho-Pinto RM, Stelmach R, Halpern A, Cukier A. Effects of weight loss on asthma control in obese patients with severe asthma. Eur Respir J. 2014;43:1368–77. doi: 10.1183/09031936.00053413.
    1. van Huisstede A, Rudolphus A, Castro Cabezas M, Biter LU, van de Geijn GJ, Taube C, Hiemstra PS, et al. Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. Thorax. 2015;70:659–67. doi: 10.1136/thoraxjnl-2014-206712.

Source: PubMed

3
Subscribe