Cognitive rehabilitation in post-COVID-19 condition: A study protocol for a randomized controlled trial

Bjørn Ingulfsvann Hagen, Anners Lerdal, Arne Søraas, Nils Inge Landrø, Ragnhild Bø, Milada Cvancarova Småstuen, Jacqueline Becker, Jan Stubberud, Bjørn Ingulfsvann Hagen, Anners Lerdal, Arne Søraas, Nils Inge Landrø, Ragnhild Bø, Milada Cvancarova Småstuen, Jacqueline Becker, Jan Stubberud

Abstract

Background: Post-COVID-19 condition is frequently comprised of persistent cognitive sequela, including deficits in attention and executive functions (EFs), which can act as a barrier for regaining pre-illness functional levels. Goal Management Training (GMT) is a cognitive rehabilitation (CR) intervention for improving attention and EFs that has received empirical support in studies of other patient groups. The present study aims to determine the efficacy of GMT for improving everyday attention and EFs in adults who experience persistent cognitive deficits after COVID-19.

Methods: This study protocol describes an open-label randomized controlled trial comparing the efficacy of GMT to a wait list control condition (WL), for improving persistent (> 2 months) cognitive sequela in post-COVID-19 condition. The study aims to recruit 240 participants aged 18 to 65 years with a history of SARS-CoV-2 infection and perceived attentional and EF difficulties in daily life. Participants will be block randomized (computer-algorithm) to either group-based GMT (n = 120) or WL (n = 120). GMT will be internet-delivered to groups of six participants in six two-hour sessions delivered once a week. The primary outcome will be the Metacognition Index of the Behavior Rating Inventory of Executive Function - Adult Version, a self-report measure assessing everyday EF difficulties, specifically metacognition, at six months post-treatment. Secondary outcomes include performance-based neurocognitive measures, and tertiary outcomes include rating scales of cognition, emotional health, quality of life, and fatigue.

Conclusion: Study findings could contribute to providing an evidence-based treatment option for symptoms that are frequent and debilitating following a prevalent condition.

Trial registration number: NCT05494424.

Keywords: COVID-19; Cognition; Cognitive rehabilitation; Executive functions; Randomized controlled trial.

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Study flowchart.

References

    1. Soriano J.B., Murthy S., Marshall J.C., Relan P., Diaz J.V., Group WHOCCDW A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2021 doi: 10.1016/S1473-3099(21)00703-9.
    1. Premraj L., Kannapadi N.V., Briggs J., Seal S.M., Battaglini D., Fanning J., et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis. J. Neurol. Sci. 2022;434 doi: 10.1016/j.jns.2022.120162.
    1. Ceban F., Ling S., Lui L.M.W., Lee Y., Gill H., Teopiz K.M., et al. Fatigue and cognitive impairment in Post-COVID-19 syndrome: a systematic review and meta-analysis. Brain Behav. Immun. 2022;101:93–135. doi: 10.1016/j.bbi.2021.12.020.
    1. Bungenberg J., Humkamp K., Hohenfeld C., Rust M.I., Ermis U., Dreher M., et al. Long COVID-19: objectifying most self-reported neurological symptoms. Ann. Clin. Transl. Neurol. 2022 doi: 10.1002/acn3.51496.
    1. Hampshire A., Trender W., Chamberlain S.R., Jolly A.E., Grant J.E., Patrick F., et al. Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine. 2021;39 doi: 10.1016/j.eclinm.2021.101044.
    1. Becker J.H., Lin J.J., Doernberg M., Stone K., Navis A., Festa J.R., et al. Assessment of cognitive function in patients after COVID-19 infection. JAMA Netw. Open. 2021;4:e2130645. doi: 10.1001/jamanetworkopen.2021.30645.
    1. Henneghan A.M., Lewis K.A., Gill E., Kesler S.R. Cognitive impairment in non-critical, mild-to-moderate COVID-19 survivors. Front. Psychol. 2022;365 doi: 10.3389/fpsyg.2022.770459.
    1. Krishnan K., Miller A.K., Reiter K., Bonner-Jackson A. Neurocognitive profiles in patients with persisting cognitive symptoms associated with COVID-19. Arch. Clin. Neuropsychol. 2022 doi: 10.1093/arclin/acac004.
    1. Apple A.C., Oddi A., Peluso M.J., Asken B.M., Henrich T.J., Kelly J.D., et al. Risk factors and abnormal cerebrospinal fluid associate with cognitive symptoms after mild COVID-19. Ann. Clin. Transl. Neurol. 2022 doi: 10.1002/acn3.51498.
    1. Amalakanti S., Arepalli K.V.R., Jillella J.P. Cognitive assessment in asymptomatic COVID-19 subjects. Virusdisease. 2021;32:146–149.
    1. Ferrucci R., Dini M., Rosci C., Capozza A., Groppo E., Reitano M.R., et al. One-year cognitive follow-up of COVID-19 hospitalized patients. Eur. J. Neurol. 2022 doi: 10.1111/ene.15324.
    1. Hampshire A., Chatfield D.A., Jolly A., Trender W., Hellyer P.J., Del Giovane M., et al. Multivariate profile and acute-phase correlates of cognitive deficits in a COVID-19 hospitalised cohort. EClinicalMedicine. 2022;47 doi: 10.1016/j.eclinm.2022.101417.
    1. Fjelltveit E.B., Blomberg B., Kuwelker K., Zhou F., Onyango T.B., Brokstad K.A., et al. Symptom burden and immune dynamics 6 to 18 months following mild SARS-CoV-2 infection -a case-control study. Clin. Infect. Dis. 2022 doi: 10.1093/cid/ciac655.
    1. Vanderlind W.M., Rabinovitz B.B., Miao I.Y., Oberlin L.E., Bueno-Castellano C., Fridman C., et al. A systematic review of neuropsychological and psychiatric sequalae of COVID-19: implications for treatment. Curr. Opin. Psychiatry. 2021;34:420. doi: 10.1097/YCO.0000000000000713.
    1. Jaywant A., Vanderlind W.M., Alexopoulos G.S., Fridman C.B., Perlis R.H., Gunning F.M. Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacology. 2021;46:2235–2240. doi: 10.1038/s41386-021-00978-8.
    1. Mazza M.G., Palladini M., De Lorenzo R., Magnaghi C., Poletti S., Furlan R., et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up. Brain Behav. Immun. 2021;94:138–147. doi: 10.1016/j.bbi.2021.02.021.
    1. Bourmistrova N.W., Solomon T., Braude P., Strawbridge R., Carter B. Long-term effects of COVID-19 on mental health: a systematic review. J. Affect. Disord. 2022;299:118–125. doi: 10.1016/j.jad.2021.11.031.
    1. Taquet M., Geddes J.R., Husain M., Luciano S., Harrison P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8:416–427. doi: 10.1016/S2215-0366(21)00084-5.
    1. Magnúsdóttir I., Lovik A., Unnarsdóttir A.B., McCartney D., Ask H., Kõiv K., et al. Acute COVID-19 severity and mental health morbidity trajectories in patient populations of six nations: an observational study. Lancet Public Health. 2022 doi: 10.1016/S2468-2667(22)00042-1.
    1. Santomauro D.F., Herrera A.M.M., Shadid J., Zheng P., Ashbaugh C., Pigott D.M., et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398:1700–1712. doi: 10.1016/S0140-6736(21)02143-7.
    1. Miskowiak K.W., Johnsen S., Sattler S.M., Nielsen S., Kunalan K., Rungby J., et al. Cognitive impairments four months after COVID-19 hospital discharge: pattern, severity and association with illness variables. Eur. Neuropsychopharmacol. 2021;46:39–48. doi: 10.1016/j.euroneuro.2021.03.019.
    1. Ramírez-Moreno J.M., Muñoz-Sanz A., Vaz-Leal F.J. Cognitive function and neuropsychiatric disorders after COVID-19: a long term social and clinical problem? BioMed. 2022;2:50–59. doi: 10.3390/biomed2010005.
    1. García-Sánchez C., Calabria M., Grunden N., Pons C., Arroyo J.A., Gómez-Anson B., et al. Neuropsychological deficits in patients with cognitive complaints after COVID-19. Brain Behav. 2022;12 doi: 10.1002/brb3.2508.
    1. Rolin S., Chakales A., Verduzco-Gutierrez M. Rehabilitation strategies for cognitive and neuropsychiatric manifestations of COVID-19. Curr. Phys. Med. Rehabil. Rep. 2022:1–6. doi: 10.1007/s40141-022-00352-9.
    1. Stamenova V., Levine B. Effectiveness of goal management training® in improving executive functions: a meta-analysis. Neuropsychol. Rehabil. 2019:1–31. doi: 10.1080/09602011.2018.1438294.
    1. Palladini M., Bravi B., Colombo F., Caselani E., Di Pasquasio C., D’Orsi G., et al. Cognitive remediation therapy for post-acute persistent cognitive deficits in COVID-19 survivors: a proof-of-concept study. Neuropsychol. Rehabil. 2022:1–18. doi: 10.1080/09602011.2022.2075016.
    1. Levine B., Robertson I.H., Clare L., Carter G., Hong J., Wilson B.A., et al. Rehabilitation of executive functioning: an experimental–clinical validation of goal management training. J. Int. Neuropsychol. Soc. 2000;6:299–312.
    1. Favieri F., Forte G., Agostini F., Giovannoli J., Di Pace E., Langher V., et al. The cognitive consequences of the COVID-19 pandemic on members of the general population in Italy: a preliminary study on executive inhibition. J. Clin. Med. 2021;11:170. doi: 10.3390/jcm11010170.
    1. Tornås S., Løvstad M., Solbakk A.-K., Schanke A.-K., Stubberud J. Goal management training combined with external cuing as a means to improve emotional regulation, psychological functioning, and quality of life in patients with acquired brain injury: a randomized controlled trial. Arch. Phys. Med. Rehabil. 2016;97:1841–1852.e3. doi: 10.1016/j.apmr.2016.06.014.
    1. Jensen D.A., Halmøy A., Stubberud J., Haavik J., Lundervold A.J., Sørensen L. An exploratory investigation of goal management training in adults with ADHD: improvements in inhibition and everyday functioning. Front. Psychol. 2021;4007 doi: 10.3389/fpsyg.2021.659480.
    1. Hagen B.I., Lau B., Joormann J., Småstuen M.C., Landrø N.I., Stubberud J. Goal management training as a cognitive remediation intervention in depression: a randomized controlled trial. J. Affect. Disord. 2020;275:268–277. doi: 10.1016/j.jad.2020.07.015.
    1. Stubberud J., Langenbahn D., Levine B., Stanghelle J., Schanke A.-K. Goal management training of executive functions in patients with spina bifida: a randomized controlled trial. J. Int. Neuropsychol. Soc. 2013;19:672–685. doi: 10.1017/S1355617713000209.
    1. Boyd J.E., O’Connor C., Protopopescu A., Jetly R., Rhind S.G., Lanius R.A., et al. An open-label feasibility trial examining the effectiveness of a cognitive training program, goal management training, in individuals with posttraumatic stress disorder. Chronic Stress. 2019;3 doi: 10.1177/2470547019841599. 2470547019841599.
    1. Søraas A., Bø R., Kalleberg K.T., Støer N.C., Ellingjord-Dale M., Landrø N.I. Self-reported memory problems 8 months after COVID-19 infection. JAMA Netw. Open. 2021;4:e2118717. doi: 10.1001/jamanetworkopen.2021.18717.
    1. Sheehan D.V., Lecrubier Y., Sheehan K.H., Amorim P., Janavs J., Weiller E., et al. The Mini-international neuropsychiatric interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry. 1998;59:22–33.
    1. Friborg O., Hjemdal O., Rosenvinge J.H., Martinussen M. A new rating scale for adult resilience: what are the central protective resources behind healthy adjustment? Int. J. Methods Psychiatr. Res. 2003;12:65–76. doi: 10.1002/mpr.143.
    1. Bastien C.H., Vallières A., Morin C.M. Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Med. 2001;2:297–307. doi: 10.1016/S1389-9457(00)00065-4.
    1. Carver C.S. You want to measure coping but your protocol’too long: consider the brief cope. Int. J. Behav. Med. 1997;4:92–100. doi: 10.1207/s15327558ijbm0401_6.
    1. Broadhead W.E., Gehlbach S.H., De Gruy F.V., Kaplan B.H. The Duke-UNC Functional Social Support Questionnaire: Measurement of social support in family medicine patients. Med. Care. 1988:709–723.
    1. Nasreddine Z.S., Phillips N.A., Bédirian V., Charbonneau S., Whitehead V., Collin I., et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Wechsler D. San Antonio; Texas Psychol Corp: 2014. Wechsler Adult Intelligence Scale–Fourth Edition (WAIS–IV)
    1. Smith A. Western psychological services Los Angeles; 2007. Symbol digit modalities test.
    1. Delis D.C., Kramer J.H., Kaplan E., Ober B.A. Psychological Corporation; 2000. CVLT-II: California verbal learning test: adult version.
    1. Wechsler D. San Antonio; TX Psychol Corp: 1999. Manual for the Wechsler Abbreviated Intelligence Scale (WASI)
    1. Chierchia G., Fuhrmann D., Knoll L.J., Pi-Sunyer B.P., Sakhardande A.L., Blakemore S.-J. The matrix reasoning item bank (MaRs-IB): novel, open-access abstract reasoning items for adolescents and adults. R. Soc. Open Sci. 2019;6 doi: 10.1098/rsos.190232.
    1. Roth R.M., Isquith P.K., Gioia G. Psychological Assessment Resources; Lutz, FL: 2005. Behavioral Rating Inventory of Executive Function-Adult Version.
    1. CANTAB CC . 2016. Cognitive Assessment Software. Cambridge Cogn Cambridge, UK.
    1. Miyake A., Friedman N.P., Emerson M.J., Witzki A.H., Howerter A., Wager T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 2000;41:49–100. doi: 10.1006/cogp.1999.0734.
    1. Zigmond A.S., Snaith R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983;67:361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Schwarzer R., Jerusalem M. Generalized self-efficacy scale. Meas Heal Psychol. A User’s Portfolio Causal Control Beliefs. 1995;1:35–37.
    1. Krupp L.B., LaRocca N.G., Muir-Nash J., Steinberg A.D. The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 1989;46:1121–1123. doi: 10.1001/archneur.1989.00520460115022.
    1. Sullivan M.J., Edgley K., Dehoux E. A survey of multiple sclerosis: I. Perceived cognitive problems and compensatory strategy use. Can. J. Rehabil. 1990;4:99–105.
    1. Royle J., Lincoln N.B. The everyday memory questionnaire–revised: development of a 13-item scale. Disabil. Rehabil. 2008;30:114–121. doi: 10.1080/09638280701223876.
    1. Ware J.E., Jr., Sherbourne C.D. The MOS 36-item short-form health survey (SF-36): I. conceptual framework and item selection. Med. Care. 1992:473–483.
    1. The EuroQol Group EuroQol-a new facility for the measurement of health-related quality of life. Health Policy (New York) 1990;16:199–208.
    1. Poletti S., Palladini M., Mazza M.G., De Lorenzo R., Irene B., Sara B., et al. Long-term consequences of COVID-19 on cognitive functioning up to 6 months after discharge: role of depression and impact on quality of life. Eur. Arch. Psychiatry Clin. Neurosci. 2021 doi: 10.1007/s00406-021-01346-9.
    1. Schulz K.F., Altman D.G., Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8:18.
    1. Vannorsdall T.D., Brigham E., Fawzy A., Raju S., Gorgone A., Pletnikova A., et al. Cognitive dysfunction, psychiatric distress, and functional decline after COVID-19. J. Acad. Consult. Psychiatry. 2022;63:133–143. doi: 10.1016/j.jaclp.2021.10.006.
    1. Delgado-Alonso C., Valles-Salgado M., Delgado-Álvarez A., Yus M., Gómez-Ruiz N., Jorquera M., et al. Cognitive dysfunction associated with COVID-19: a comprehensive neuropsychological study. J. Psychiatr. Res. 2022;150:40–46. doi: 10.1016/j.jpsychires.2022.03.033.
    1. Strawbridge R., Tsapekos D., Hodsoll J., Mantingh T., Yalin N., McCrone P., et al. Cognitive remediation therapy for patients with bipolar disorder: a randomised proof-of-concept trial. Bipolar Disord. 2021;23:196–208. doi: 10.1111/bdi.12968.
    1. Toplak M.E., West R.F., Stanovich K.E. Practitioner review: do performance-based measures and ratings of executive function assess the same construct? J. Child Psychol. Psychiatry Allied Discip. 2013;54:131–143. doi: 10.1111/jcpp.12001.
    1. Chaytor N., Schmitter-Edgecombe M. The ecological validity of neuropsychological tests: a review of the literature on everyday cognitive skills. Neuropsychol. Rev. 2003;13:181–197. doi: 10.1023/b:nerv.0000009483.91468.fb.
    1. Miskowiak K., Burdick K.E., Martinez-Aran A., Bonnin C.M., Bowie C.R., Carvalho A.F., et al. Methodological recommendations for cognition trials in bipolar disorder by the International Society for Bipolar Disorders targeting cognition task force. Bipolar Disord. 2017;19:614–626. doi: 10.1111/bdi.12534.

Source: PubMed

3
Subscribe