Pharmacokinetic Studies of Baclofen Are Not Sufficient to Establish an Optimized Dosage for Management of Alcohol Disorder

Nicolas Simon, Nicolas Franchitto, Benjamin Rolland, Nicolas Simon, Nicolas Franchitto, Benjamin Rolland

Abstract

Several clinical randomized trials have evaluated the interest of baclofen in patients with alcohol use disorder. Depending on the study design and the inclusion criteria, the results vary from enthusiastic to pessimistic. However, all researchers and practitioners agree that they observe a wide variability in the therapeutic responses. If some patients exhibit a clinical response at low doses, ~40 mg daily, others require doses higher than 300 mg. Before multiplying new other clinical trials, it is required to better understand the reason of this variability. Several mechanisms may be responsible for providing different effects with an identical daily dose. Especially, each pharmacokinetic step, absorption, distribution, metabolism, and elimination may lead to a different exposure after an identical dose. Absorption may imply a saturation process limiting the bioavailability (F) of baclofen in some patients. In such a situation, food, or drug-drug interaction can change the absorption rate of the drug modifying the maximum concentration (Cmax) and area under the curve (AUC). Distribution and brain penetration across the blood-brain barrier may depend of a specific transporter. These transporters are subject to genetic polymorphism and drug-drug interaction. Finally, elimination may be increased by a specific secretion pathway. This review describes all available pharmacokinetic data on these different pharmacokinetics steps aiming to identify the source of variability of baclofen in patients with alcohol use disorder.

Keywords: GABA; alcohol use disorder; baclofen; clinical pharmacokinetics; modeling.

Figures

Figure 1
Figure 1
Oral dose vs. trough CSF baclofen concentration in patient with severe spasticity. [From data published by Heetla et al. (1) and individuals CSF trough concentration values kindly communicated by the authors].
Figure 2
Figure 2
Simulated concentration vs. time profile following an oral dose of 80 mg of baclofen in four groups of patients with different chronic kidney disease stages.

References

    1. Heetla HW, Proost JH, Molmans BH, Staal MJ, van Laar T. A pharmacodynamic-pharmacodynamic model for intrathecal baclofen in patients with severe spasticity. Br J Clin Pharmacol. (2016) 81:101–12. 10.1111/bcp.12781
    1. Rolland B, Paille F, Gillet C, Rigaud A, Moirand R, Dano C, et al. . Pharmacotherapy for alcohol dependence: the 2015 recommendations of the French Alcohol Society, issued in partnership with the European Federation of Addiction Societies. CNS Neurosci Ther. (2016) 22:25–37. 10.1111/cns.12489
    1. Imbert B, Alvarez JC, Simon N. Anticraving effect of baclofen in alcohol-dependent patients. Alcohol Clin Exp Res. (2015) 39:1602–8. 10.1111/acer.12823
    1. Rose AK, Jones A. Baclofen: its effectiveness in reducing harmful drinking, craving, and negative mood. A meta-analysis. Addiction (2018) 113:1396–406. 10.1111/add.14191
    1. Palpacuer C, Duprez R, Huneau A, Locher C, Boussageon R, Laviolle B. Pharmacologically controlled drinking in the treatment of alcohol dependence or alcohol use disorders: a systematic review with direct and network meta-analyses on nalmefene, naltrexone, acamprosate, baclofen and topiramate. Addiction (2018) 113:220–37. 10.1111/add.13974
    1. Reynaud M, Aubin HJ, Trinquet F, Zakine B, Dano C, Dematteis M, et al. . A randomized, placebo-controlled study of high-dose baclofen in alcohol-dependent patients-the ALPADIR study. Alcohol Alcohol. (2017) 52:439–46. 10.1093/alcalc/agx030
    1. Müller CA, Geisel O, Pelz P, Higl V, Krüger J, Stickel A, et al. . High-dose baclofen for the treatment of alcohol dependence (BACLAD study): a randomized, placebo-controlled trial. Eur Neuropsychopharmacol. (2015) 25:1167–77. 10.1016/j.euroneuro.2015.04.002
    1. Agarwal SK, Kriel RL, Cloyd JC, Coles LD, Scherkenbach LA, Tobin MH, et al. . A pilot study assessing pharmacokinetics and tolerability of oral and intravenous baclofen in healthy adult volunteers. J Child Neurol. (2015) 30:37–41. 10.1177/0883073814535504
    1. Kowalski P, Chmielewska A, Konieczna L, Oledzka I, Zarzycki PK, Lamparczyk H. The bioequivalence study of baclofen and lioresal tablets using capillary electrophoresis. Biomed Chromatogr. (2004) 18:311–7. 10.1002/bmc.321
    1. Schmitz NS, Krach LE, Coles LD, Mishra U, Agarwal SK, Cloyd JC, et al. . A randomized dose escalation study of intravenous baclofen in healthy volunteers: clinical tolerance and pharmacokinetics. PMR (2017) 9:743–50. 10.1016/j.pmrj.2016.11.002
    1. Shellenberger MK, Groves L, Shah J, Novack GD. A controlled pharmacokinetic evaluation of tizanidine and baclofen at steady state. Drug Metab Dispos. (1999) 27:201–4.
    1. Wuis EW, Dirks MJ, Termond EF, Vree TB, Van der Kleijn E. Plasma and urinary excretion kinetics of oral baclofen in healthy subjects. Eur J Clin Pharmacol. (1989) 37:181–4. 10.1007/BF00558228
    1. Wuis EW, Dirks MJ, Vree TB, Van der Kleijn E. Pharmacokinetics of baclofen in spastic patients receiving multiple oral doses. Pharm Weekbl Sci. (1990) 12:71–4. 10.1007/BF01970149
    1. Chevillard L, Sabo N, Tod M, Labat L, Chasport C, Chevaleyre C, et al. . Population pharmacokinetics of oral baclofen at steady-state in alcoholic-dependent adult patients. Fundam Clin Pharmacol. (2017) 32:239–48. 10.1111/fcp.12330
    1. Lal R, Sukbuntherng J, Tai EH, Upadhyay S, Yao F, Warren MS, et al. . Arbaclofen placarbil, a novel R-baclofen prodrug: improved absorption, distribution, metabolism, and elimination properties compared with R-baclofen. J Pharmacol Exp Ther. (2009) 330:911–21. 10.1124/jpet.108.149773
    1. Nácher A, Polache A, Moll-Navarro MJ, Plá-Delfina JM, Merino M. Influence of gamma-aminobutyric acid on baclofen intestinal absorption. Biopharm Drug Dispos. (1994) 15:373–82. 10.1002/bdd.2510150504
    1. Cercós-Fortea T, Polache A, Nácher A, Cejudo-Ferragud E, Casabó VG, Merino M. Influence of leucine on intestinal baclofen absorption as a model compound of neutral alpha-aminoacids. Biopharm Drug Dispos. (1995) 16:563–77. 10.1002/bdd.2510160705
    1. Moll-Navarro MJ, Merino M, Casabó VG, Nácher A, Polache A. Interaction of taurine on baclofen intestinal absorption: a nonlinear mathematical treatment using differential equations to describe kinetic inhibition models. J Pharm Sci. (1996) 85:1248–54. 10.1021/js9504346
    1. Peterson GM, McLean S, Millingen KS. Food does not affect the bioavailability of baclofen. Med J Aust. (1985) 142:689–90.
    1. Benet LZ, Hoener B-A. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. (2002) 71:115–21. 10.1067/mcp.2002.121829
    1. Leisen C, Langguth P, Herbert B, Dressler C, Koggel A, Spahn-Langguth H. Lipophilicities of baclofen ester prodrugs correlate with affinities to the ATP-dependent efflux pump P-glycoprotein: relevance for their permeation across the blood-brain barrier? Pharm Res. (2003) 20:772–8. 10.1023/A:1023437603555
    1. van Bree JB, Audus KL, Borchardt RT. Carrier-mediated transport of baclofen across monolayers of bovine brain endothelial cells in primary culture. Pharm Res. (1988) 5:369–71. 10.1023/A:1015959628008
    1. van Bree JB, Heijligers-Feijen CD, de Boer AG, Danhof M, Breimer DD. Stereoselective transport of baclofen across the blood-brain barrier in rats as determined by the unit impulse response methodology. Pharm Res. (1991) 8:259–62. 10.1023/A:1015812725011
    1. Deguchi Y, Inabe K, Tomiyasu K, Nozawa K, Yamada S, Kimura R. Study on brain interstitial fluid distribution and blood-brain barrier transport of baclofen in rats by microdialysis. Pharm Res. (1995) 12:1838–44. 10.1023/A:1016263032765
    1. Ohtsuki S, Asaba H, Takanaga H, Deguchi T, Hosoya K, Otagiri M, et al. . Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem. (2002) 83:57–66. 10.1046/j.1471-4159.2002.01108.x
    1. Hakkarainen JJ, Jalkanen AJ, Kääriäinen TM, Keski-Rahkonen P, Venäläinen T, Hokkanen J, et al. . Comparison of in vitro cell models in predicting in vivo brain entry of drugs. Int J Pharm. (2010) 402:27–36. 10.1016/j.ijpharm.2010.09.016
    1. Knutsson E, Lindblom U, Martensson A. Plasma and cerebrospinal fluid levels of baclofen (lioresal) at optimal therapeutic responses in spastic paresis. J Neurol Sci. (1974) 23:473–84. 10.1016/0022-510X(74)90163-4
    1. Sanchez-Ponce R, Wang LQ, Lu W, von Hehn J, Cherubini M, Rush R. Metabolic and pharmacokinetic differentiation of STX209 and racemic baclofen in humans. Metabolites (2012) 2:596–613. 10.3390/metabo2030596
    1. Faigle JW, Keberle H. The chemistry and kinetics of lioresal. Postgrad Med J. (1972) 48:9–13. 10.1136/pgmj.48.555.59
    1. Vlavonou R, Perreault MM, Barrière O, Shink E, Tremblay PO, Larouche R, et al. . Pharmacokinetic characterization of baclofen in patients with chronic kidney disease: dose adjustment recommendations. J Clin Pharmacol. (2014) 54:584–92. 10.1002/jcph.247
    1. Marsot A, Imbert B, Alvarez JC, Grassin-Delyle S, Jaquet I, Lançon C, et al. . High variability in the exposure of baclofen in alcohol-dependent patients. Alcohol Clin Exp Res. (2014) 38:316–21. 10.1111/acer.12235
    1. Meulendijks D, Khan S, Koks CH, Huitema AD, Schellens JH, Beijnen JH. Baclofen overdose treated with continuous venovenous hemofiltration. Eur J Clin Pharmacol. (2015) 71:357–61. 10.1007/s00228-014-1802-y
    1. Wolf E, Kothari NR, Roberts JK, Sparks MA. Baclofen toxicity in kidney disease. Am J Kidney Dis. (2018) 71:275–80. 10.1053/j.ajkd.2017.07.005
    1. Cleophax C, Goncalves A, Chasport C, de Beaugrenier E, Labat L, Declèves X, et al. . Usefulness of plasma drug monitoring in severe baclofen poisoning. Clin Toxicol (Phila) (2015) 53:923–4. 10.3109/15563650.2015.1088158
    1. Guerzoni S, Pellesi L, Pini LA, Caputo F. Drug-drug interactions in the treatment for alcohol use disorders: a comprehensive review. Pharmacol Res. (2018) 133:65–76. 10.1016/j.phrs.2018.04.024
    1. Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, et al. . The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. (2015) 95:83–123. 10.1152/physrev.00025.2013
    1. Campos-Bedolla P, Walter FR, Veszelka S, Deli MA. Role of the blood-brain barrier in the nutrition of the central nervous system. Arch Med Res. (2014) 45:610–38. 10.1016/j.arcmed.2014.11.018
    1. Donovan MD, O'Brien FE, Boylan GB, Cryan JF, Griffin BT. The effect of organic anion transporter 3 inhibitor probenecid on bumetanide levels in the brain: an integrated in vivo microdialysis study in the rat. J Pharm Pharmacol. (2015) 67:501–10. 10.1111/jphp.12341
    1. Narumi K, Sato Y, Kobayashi M, Furugen A, Kasashi K, Yamada T, et al. . Effects of proton pump inhibitors and famotidine on elimination of plasma methotrexate: evaluation of drug-drug interactions mediated by organic anion transporter 3. Biopharm Drug Dispos. (2017) 38:501–8. 10.1002/bdd.2091

Source: PubMed

3
Subscribe