Simultaneous Quantitation of S(+)- and R(-)-Baclofen and Its Metabolite in Human Plasma and Cerebrospinal Fluid using LC-APCI-MS/MS: An Application for Clinical Studies

Qingfeng He, Yashpal S Chhonker, Matthew J McLaughlin, Daryl J Murry, Qingfeng He, Yashpal S Chhonker, Matthew J McLaughlin, Daryl J Murry

Abstract

Baclofen is a racemic mixture that is commonly used for the treatment for spasticity. However, the optimal dose and dosing interval to achieve effective cerebral spinal fluid (CSF) concentrations of baclofen are not known. Moreover, it is unclear if there are differences in the ability of R- or S-baclofen to cross the blood-brain barrier and achieve effective CSF concentrations. We have validated a liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method with improved selectivity and sensitivity for the simultaneous quantitation of R- and S-baclofen and metabolites in plasma and CSF. Protein precipitation by acetonitrile was utilized to obtain an acceptable recovery of the analytes. The detection and separation of analytes was achieved on a 48 °C-heated Crownpak CR(+) column (150 mm × 4.0 mm, 5μ) with elution using 0.4% formic acid (FA) in water and 0.4% FA in acetonitrile as the mobile phase running at a flow rate of 1.0 mL/min. Accurate quantitation was assured by using this MS/MS method with atmospheric pressure chemical ionization in multiple reaction monitoring (MRM) mode. Therefore, this method is enantioselective, accurate, precise, sensitive, reliable, and linear from 1 to 1500 ng/mL for baclofen and 2 to 4000 ng/mL for the metabolites. An additional method was developed to separate racemic baclofen 3-(4-chlorophenyl)-4 hydroxybutyric acid metabolites for individual concentration determination. Both validated methods were successfully applied to a clinical pharmacokinetic human plasma and CSF study evaluating the disposition of baclofen and metabolites.

Keywords: 3-(4-chlorophenyl)-4 hydroxybutyric acid (CHBA); CSF; LC-MS/MS; baclofen; chiral separation; pharmacokinetics; spasticity.

Conflict of interest statement

There is no conflict of interest to disclose.

Figures

Figure 1
Figure 1
The chemical structure of (a) baclofen, (b) baclofen-d4, and (c) 3-(4-chlorophenyl)-4 hydroxybutyric acid (CHBA) metabolite.
Figure 2
Figure 2
MS product ion spectra of (a) baclofen, (b) baclofen-d4, and (c) CHBA metabolite in +/− atmospheric pressure chemical ionization (APCI) mode.
Figure 3
Figure 3
Representative multiple reaction monitoring (MRM) ion chromatograms of (a) blank plasma using the conditions for baclofen, (b) plasma spiked with baclofen showing the two isomers (S-isomer 3.5 min and R-isomer 5.4 min at 5 ng/mL), (c) extracted human plasma sample following baclofen administration showing baclofen isomers, (d) blank plasma using the conditions for CHBA metabolite, (e) plasma spiked with CHBA metabolite showing the racemic peak for both R- and S-isomers (not separated, 8.7 min, at 5 ng/mL), (f) human plasma sample following baclofen administration showing racemic CHBA metabolite, (g) blank plasma for baclofen-d4, (h) plasma spiked with baclofen-d4 (S-isomer 3.2 min and R-isomer 5.2 min, 1000 ng/mL), (i) extracted human plasma sample following baclofen administration and spiked with baclofen-d4.

References

    1. Sanchez-Ponce R., Wang L.Q., Lu W., von Hehn J., Cherubini M., Rush R. Metabolic and Pharmacokinetic Differentiation of STX209 and Racemic Baclofen in Humans. Metabolites. 2012;2:596–613. doi: 10.3390/metabo2030596.
    1. Delgado M.R., Hirtz D., Aisen M., Ashwal S., Fehlings D., McLaughlin J., Morrison L., Shrader M., Tilton A., Vargus-Adams J.J.N., et al. Practice parameter: Pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2010;74:336–343.
    1. Navarrete-Opazo A.A., Gonzalez W., Nahuelhual P.J.A. Effectiveness of oral baclofen in the treatment of spasticity in children and adolescents with cerebral palsy. Arch. Phys. Med. Rehabil. 2016;97:604–618. doi: 10.1016/j.apmr.2015.08.417.
    1. Brogden R., Speight T., Avery G.J.D. Baclofen: A preliminary report of its pharmacological properties and therapeutic efficacy in spasticity. Drugs. 1974;8:1–14. doi: 10.2165/00003495-197408010-00001.
    1. Giesser B.J.D. Multiple Sclerosis. Drugs. 1985;29:88–95. doi: 10.2165/00003495-198529010-00004.
    1. He Y., Brunstrom-Hernandez J.E., Thio L.L., Lackey S., Gaebler-Spira D., Kuroda M.M., Stashinko E., Hoon A.H., Jr., Vargus-Adams J., Stevenson R.D., et al. Population pharmacokinetics of oral baclofen in pediatric patients with cerebral palsy. J. Pediatr. 2014;164:1181–1188. doi: 10.1016/j.jpeds.2014.01.029.
    1. McLaughlin M.J., He Y., Brunstrom-Hernandez J., Thio L.L., Carleton B.C., Ross C.J.D., Gaedigk A., Lewandowski A., Dai H., Jusko W.J., et al. Pharmacogenomic Variability of Oral Baclofen Clearance and Clinical Response in Children With Cerebral Palsy. PM & R. 2018;10:235–243.
    1. Faigle J., Keberle H.J.P. The chemistry and kinetics of Lioresal. Postgrad. Med. J. 1972;48:9–13.
    1. Kochak G.M., Rakhit A., Wagner W.E., Honc F., Waldes L., Kershaw R.A. The pharmacokinetics of baclofen derived from intestinal infusion. Clin. Pharmacol. Ther. 1985;38:251–257. doi: 10.1038/clpt.1985.167.
    1. Bahri L.E. (Ecole Nationale de Médecine Vétérinaire), Ghorbel A. (Tunis El Manar University), Thameur B.H. (Higher School of Communication of Tunis). Unpublished work. 2007.
    1. Hurlbut K. General Muscle Relaxants in Medical Toxicology. Lippincott, Williams & Wilkins; Philadelphia, PA, USA: 2005. pp. 594–596.
    1. Vlavonou R., Perreault M.M., Barrière O., Shink E., Tremblay P.O., Larouche R., Pichette V., Tanguay M.J.T.J. Pharmacokinetic characterization of baclofen in patients with chronic kidney disease: Dose adjustment recommendations. J. Clin. Pharmacol. 2014;54:584–592. doi: 10.1002/jcph.247.
    1. Ghose K., Holmes K., Matthewson K.J.P. Complications of baclofen overdosage. Postgrad. Med. J. 1980;56:865–867. doi: 10.1136/pgmj.56.662.865.
    1. Froestl W., Mickel S.J., Hall R.G., von Sprecher G., Strub D., Baumann P.A., Brugger F., Gentsch C., Jaekel J., Olpe H.R., et al. Phosphinic acid analogues of GABA. 1. New potent and selective GABAB agonists. J. Med. Chem. 1995;38:3297–3312. doi: 10.1021/jm00017a015.
    1. Farì G., Oliva M., De Venuto G., Napolitano M., Schivardi E., Lanzilotta P., Lagioia G., Fiore P., Megna M.J.S. Practical management of intrathecal baclofen therapy: Presence of symptoms of underdosing in absence of comorbidities and technical or pharmacological complications; Proceedings of the 46th Congress National Seminar; Ancona, Italy. 20–23 September 2018.
    1. Dario A., Di Stefano M.G., Grossi A., Casagrande F., Bono G. Long-term intrathecal Baclofen infusion in supraspinal spasticity of adulthood. Acta Neurol. Scand. 2002;105:83–87. doi: 10.1034/j.1600-0404.2002.1o042.x.
    1. Goda R., Murayama N., Fujimaki Y., Sudo K. Simple and sensitive liquid chromatography-tandem mass spectrometry method for determination of the S(+)- and R(−)-enantiomers of baclofen in human plasma and cerebrospinal fluid. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004;801:257–264. doi: 10.1016/j.jchromb.2003.11.025.
    1. van Bree J.B., Audus K.L., Borchardt R.T. Carrier-mediated transport of baclofen across monolayers of bovine brain endothelial cells in primary culture. Pharm. Res. 1988;5:369–371. doi: 10.1023/A:1015959628008.
    1. Sioufi A., Kaiser G., Leroux F., Dubois J.P. Determination of the S(+)- and R(−)-enantiomers of baclofen in plasma and urine by gas chromatography using a chiral fused-silica capillary column and an electron-capture detector. J. Chromatogr. 1988;450:221–232. doi: 10.1016/S0021-9673(01)83910-8.
    1. Kochak G., Honc F. Improved gas-liquid chromatographic method for the determination of baclofen in plasma and urine. J. Chromatogr. 1984;310:319–326. doi: 10.1016/0378-4347(84)80096-1.
    1. Nahar L.K., Cordero R.E., Nutt D., Lingford-Hughes A., Turton S., Durant C., Wilson S., Paterson S. Validated Method for the Quantification of Baclofen in Human Plasma Using Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Toxicol. 2016;40:117–123. doi: 10.1093/jat/bkv125.
    1. Ban E., Park J.S., Kim C.K.J.J. Semi-microbore HPLC for the determination of baclofen in human plasma using column switching. J. Liq. Chromatogr. Relat. Technol. 2004;27:3051–3064. doi: 10.1081/JLC-200032681.
    1. Chang S.Y., Zheng N.-Y., Chen C.-S. Development and validation of a capillary electrophoresis method for the determination of baclofen in human plasma. Int. J. Appl. Sci. Eng. 2004;2:277–285.
    1. Zhang H., Schmidt M., Murry D.J., Donovan M.D. Permeation and systemic absorption of R- and S-baclofen across the nasal mucosa. J. Pharm. Sci. 2011;100:2717–2723. doi: 10.1002/jps.22499.
    1. Larabi I.A., Fabresse N., Knapp A., Forcet M., Baud F.J., Lorin de la Grandmaison G., Alvarez J.C. LC–MS/MS method for quantification of baclofen in hair: A useful tool to assess compliance in alcohol dependent patients? Drug Test. Anal. 2018;10:694–700. doi: 10.1002/dta.2308.
    1. Peters F.T., Wissenbach D.K., Busardo F.P., Marchei E., Pichini S. Method Development in Forensic Toxicology. Curr. Pharm. Des. 2017;23:5455–5467. doi: 10.2174/1381612823666170622113331.
    1. Young R.R., Delwaide P.J. Drug therapy: Spasticity (second of two parts) N. Engl. J. Med. 1981;304:96–99.
    1. Knutsson E., Lindblom U., Mårtensson A.J.J. Plasma and cerebrospinal fluid levels of baclofen (Lioresal®) at optimal therapeutic responses in spastic paresis. J. Neurol. Sci. 1974;23:473–484. doi: 10.1016/0022-510X(74)90163-4.
    1. U.S. Department of Health and Human Service. Food and Drug Administration. CDER. CVM . Guidance for Industry: Bioanalytical Method Validation. FDA; Rockwell, MD, USA: 2018.

Source: PubMed

3
Subscribe