EBV-Positive Lymphoproliferations of B- T- and NK-Cell Derivation in Non-Immunocompromised Hosts

Stefan D Dojcinov, Falko Fend, Leticia Quintanilla-Martinez, Stefan D Dojcinov, Falko Fend, Leticia Quintanilla-Martinez

Abstract

The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders (LPD) of B, T or natural killer (NK) cell type has resulted in the recognition of new entities like EBV+ mucocutaneous ulcer or the addition of chronic active EBV (CAEBV) infection in the revised 2016 World Health Organization (WHO) lymphoma classification. In this article, we review the definitions, morphology, pathogenesis, and evolving concepts of the various EBV-associated disorders including EBV+ diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), EBV+ mucocutaneous ulcer, DLBCL associated with chronic inflammation, fibrin-associated DLBCL, lymphomatoid granulomatosis, the EBV+ T and NK-cell LPD of childhood, aggressive NK leukaemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity of primary EBV+ nodal T- or NK-cell lymphoma. The current knowledge regarding the pathogenesis of B-cell lymphomas that can be EBV-associated including Burkitt lymphoma, plasmablastic lymphoma and classic Hodgkin lymphoma will be also explored.

Keywords: Epstein-Barr virus; clinical features; epidemiology; lymphoma; lymphoproliferations; morphology; pathogenesis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Infectious mononucleosis. (A) The lymph node shows retained architecture, hyperplastic lymphoid follicles and expanded paracortex (H&E, 100×). (B) The paracortex contains a polymorphous infiltrate of lymphocytes and plasma cells with numerous prominent immunoblasts, including some with Hodgkin-like features (H&E, 200×). (C) CD20 (left) and CD3 (right) highlight retention of lymph node architecture and separation of B-cell and T-cell compartments (magnification, 5×). (D) CD20 highlights prominent B-cell immunoblasts including those with Hodgkin-like features. (E) CD3 highlights abundant paracortical small lymphocytic T-cell infiltrate but also scattered large T-cell immunoblasts. (F) The immunoblasts and Hodgkin-like cells are CD30 positive. (G) There is abundant paracortical staining with EBER co-localising with the B-cells (in-situ hybridization, 100×). (H) The same cells are also positive for LMP1 (immunohistochemistry, D, F, H, 200×; E, 400×).
Figure 2
Figure 2
EBV positive diffuse large B-cell lymphoma, not otherwise specified. (A) Polymorphous infiltrate of HRS-like cells in a background of lymphocytes and histiocytes (H&E, 400×). (B) Wide areas of necrosis are common and invasion of vascular walls is seen (inset) (H&E, 100×). (C) The majority of tumour cells are positive for CD20, which highlights markedly variable size of the lesional cells. (D) Most of the tumour cells are positive for CD30. (E) Occasional cells co-expressing CD15 are seen. (immunohistochemistry, C, D, 200×, E, 400×) (F) There is widespread positivity for EBER, which highlights variability in the size of the nuclei. (in-situ hybridization, 200×).
Figure 3
Figure 3
EBV positive mucocutaneous ulcer. (A) EBV MCU on the tongue—a shallow ulcer with raised edges and necrotic debris in the centre. The clinical suspicion is often one of squamous cell carcinoma. (B) The ulcer is well circumscribed and at the base shows a rim of darker staining small lymphocytes (H&E, 10×). (C) On higher magnification, it comprises a polymorphous mixture of lymphoid cells of variable sizes, many with HRS-cell features (H&E, 200×) (inset) in a lymphohistiocytic background (H&E, 600×). (D) Angioinvasion is frequently seen. (E) The lesional cells are significantly positive for CD20, which highlights variable cell size. (F) There is strong expression of PAX5. (G) OCT2 is also strongly positive. (H) Most cells express CD30. (I) There is frequent co-expression of CD15 (immunohistochemistry, D, 100×; E, F, G, H, 200×; I, 400×). (J) EBER is abundantly positive, highlighting variability in nuclear sizes of the lesional cells (in-situ hybridization, 200×).
Figure 4
Figure 4
Fibrin associated diffuse large B-cell lymphoma. (A) Prosthetic mitral valve with fibrinous vegetation. (B) The sections of the fibrin clot show blue staining areas representing cellular lymphoid proliferation (H&E, 5×). (C) The lymphoid proliferation forms a band underneath the surface of the clot (H&E, 40×). (D) It is composed of large pleomorphic lymphoid cells with focal caryorrhexis (H&E, 400×). (E) There is strong expression of CD20 and (F) MUM1. (G) Ki67 highlights high proliferation (immunohistochemistry, E, F, 100×; G, 40×). (H) All cells are EBER positive (in-situ hybridization, 40×).
Figure 5
Figure 5
Lymphomatoid granulomatosis. (A) Chest CT shows nodular cavitating lesions. (B) There is an angiocentric and angioinvasive infiltrate of variably sized lymphoid cells some with Hodgkin-like features (H&E, 100×). The extent of vascular involvement is highlighted by the Elastic-Van Gieson stain (inset) showing the same vessels and consumption of the full thickness of the vascular wall (EVG, 100×). (C) CD20 highlights variably sized lesional B-cells including those with Hodgkin-like features (grade II). (D) These cells are CD30 positive and follow the contour of the vessel. (E) The background lymphoid infiltrate comprises abundant small T-cells highlighted by CD3 (immunohistochemistry, C, 200×; D, E, 100×). (F) The lesional B-cells are positive for EBER, which highlights variation in nuclear size. (in-situ hybridization, 100×).
Figure 6
Figure 6
Plasmablastic lymphoma. (A) Tumour cells show immunoblastic and some plasmacytic features (H&E, 200×). (B) Some tumours show a greater degree of pleomorphism and more marked plasma cell differentiation (H&E, 200×). (C) There is lack of expression of CD20 and (D) CD45. (E) The tumour cells are positive for CD138 and (F) MUM1. (G) There is strong expression of CD56 in some tumours. (H) Aberrant expression of CD3 may be observed. (I) There is significant positivity for MYC (immunohistochemistry, C–G, I 200×, H, 400×). (J) All tumour cells are positive for EBER (in-situ hybridization, 100×).
Figure 7
Figure 7
Burkitt lymphoma. (A) The tumour is composed of regular, medium size cells with basophilic cytoplasm, coarse nuclear chromatin and small peripheral nucleoli; tangible body macrophages are scattered through the tumour generating a starry sky appearance (H&E, 100×). (B) Some tumours show copious granulomatous reaction, which may obscure the lymphoma. (C) There is strong, uniform expression of CD10. (D) No expression of BCL2 is seen. (E) Ki67 shows 100% proliferation fraction. (F) CD3 shows very occasional reactive small T cells (immunohistochemistry, B–F, 100×).
Figure 8
Figure 8
Classic Hodgkin lymphoma (CHL). (A) Lymph node infiltrated by CHL with Hodgkin and Reed-Sternberg cells (HRS cells) in a mixed reactive background composed of eosinophils, small lymphocytes, histiocytes and plasma cells (H&E, 400×). (B) CD30 highlights the HRS cells. (C) The HRS cells are weak PAX5 positive, in contrast to the small reactive B cells, which show strong PAX5 nuclear staining. (D) CD15 is positive in the HRS cells (immunohistochemistry, B–D, 400×). (E) EBERs in-situ hybridization is only positive in HRS cells (400×). Inset: EBV infected cell expresses the EBV-encoded latent membrane protein 1 (LMP1) (immunohistochemistry, 400×).
Figure 9
Figure 9
Chronic active EBV infection, systemic form. (A) Lymph node with preserved architecture (H&E, 25×). (B) Higher magnification demonstrates normal reactive germinal centres (H&E, 200×). (C) EBER in-situ hybridization shows positive cells both in the follicles and in the interfollicular areas (magnification, 200×). (D) Skin biopsy shows a discrete lymphoid infiltrate in the upper dermis and in the sub-epidermis (H&E, 200×). (E) CD3 is positive in the lymphocytes (magnification 200×). (F) Scattered T cell lymphocytes are EBER positive (in-situ hybridization, 200×).
Figure 10
Figure 10
Hydroa vacciniforme-like lymphoproliferative disorder. (A) Sun expose areas of face and arms show papulovesicular eruptions with crusts alternating with varicelliform scars after healing. (B) Skin biopsy with intraepidermal bullae and a dense infiltrate in the dermis surrounding adnexae and blood vessels (H&E, 50×). (C) The lymphoid infiltrate is CD8 positive (magnification 50×). (D) The lymphoid infiltrate is positive for EBV, as demonstrated by in-situ hybridization for EBV-encoded small RNA (EBER) (100×).
Figure 11
Figure 11
Aggressive NK-cell leukaemia. (A) Bone marrow biopsy with a subtle lymphoid infiltrate difficult to identify with H&E stains (H&E, 400×). Insert: EBER in-situ hybridization shows EBER+ cells (400×). (B) Hypercellular bone marrow biopsy with a clear medium-sized cell infiltrate with irregular nuclei (H&E, 400×). (C) The infiltrating cells are CD56 positive. (D) TIA1 is also positive (magnification, C, D, 400×). (E) Liver biopsy with dilated sinuses and a subtle infiltrate of small to medium-sized cells (H&E, 200×). Inset: The cells show atypia with irregular nuclei and one conspicuous nucleolous (H&E, 630×) (F) CD56 is positive in the infiltrating lymphocytes indicative of the NK-cell derivation. (G) EBER in-situ hybridization is positive (magnification, F, G, 200×).
Figure 12
Figure 12
Extranodal, NK/T-cell type, nasal type. (A) Nasal biopsy shows a dense lymphoid infiltrate with extensive ulceration of the epithelium and destruction of adnexae and blood vessels (H&E, 25×). (B) Same biopsy stained with EBER in-situ hybridization reveals the dense EBER+ infiltrate (25×). (C) Medium-sized arteria with angioinvesion and angiodestruction (H&E, 200×). Inset: higher magnification shows the atypical cell infiltrate, with irregular nuclei and abundant cytoplasm (H&E, 630×). (D) The tumour cells are CD56 positive. (E) The cells are EBER positive. (F) TIA1 is also positive in the tumour cells (magnification, D–F, 200×).
Figure 13
Figure 13
Primary EBV+ nodal T cell lymphoma. (A) Lymph node with complete destruction of the normal architecture by a diffuse lymphoid infiltrate (H&E, 100×). (B) Higher magnification shows that the infiltrate is composed of large atypical, pleomorphic cells some resembling Hodgkin and Reed-Stenberg cells (H&E, 400×). (C) Giemsa stain highlights the cytological features of the neoplastic cells (Giemsa, 400×). (D) The tumour cells are CD3 positive. (E) TIA1 is positive. (F) Note the strong, homogeneous expression of CD30. (G) CD56 is positive only in rare malignant cells (immunohistochemistry, D–G, 400×). (H) EBER is positive in the majority of tumour cells (in-situ hybridization, 100×). Inset: LMP1 is positive indicating an EBV latency type II (magnification, 400×).

References

    1. Taylor G.S., Long H.M., Brooks J.M., Rickinson A.B., Hislop A.D. The immunology of Epstein-Barr virus induced disease. Annu. Rev. Immunol. 2015;33:787–821. doi: 10.1146/annurev-immunol-032414-112326.
    1. Young L.S., Rickinson A.B. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer. 2004;4:757–768. doi: 10.1038/nrc1452.
    1. Young L.S., Yap L.F., Murray P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer. 2016;16:789–802. doi: 10.1038/nrc.2016.92.
    1. Thorley-Lawson D.A. EBV persistence-introducing the virus. Curr. Top. Microbiol. 2015;390:151–209. doi: 10.1007/978-3-319-22822-8_8.
    1. Dunmire S.K., Hogquist K.A., Balfour H.H. Infectious mononucleosis. Curr. Top. Microbiol. 2015;390:211–240. doi: 10.1007/978-3-319-22822-8_9.
    1. Abbott R.J.M., Quinn L.L., Leese A.M., Scholes H.M., Pachnio A., Rickinson A.B. Cd8(+) T cell responses to lytic EBV infection: Late antigen specificities as subdominant components of the total response. J. Immunol. 2013;191:5398–5409. doi: 10.4049/jimmunol.1301629.
    1. Hislop A.D., Taylor G.S., Sauce D., Rickinson A.B. Cellular responses to viral infection in humans: Lessons from Epstein-Barr virus. Annu. Rev. Immunol. 2007;25:587–617. doi: 10.1146/annurev.immunol.25.022106.141553.
    1. Cohen J.I., Kimura H., Nakamura S., Ko Y.H., Jaffe E.S. Epstein-Barr virus-associated lymphoproliferative disease in non-immunocompromised hosts: A status report and summary of an international meeting, 8–9 September 2008. Ann. Oncol. 2009;20:1472–1482. doi: 10.1093/annonc/mdp064.
    1. Cesarman E. Gammaherpesviruses and lymphoproliferative disorders. Annu. Rev. Pathol. Mech. 2014;9:349–372. doi: 10.1146/annurev-pathol-012513-104656.
    1. Cesarman E. How do viruses trick B cells into becoming lymphomas? Curr. Opin. Hematol. 2014;21:358–368. doi: 10.1097/MOH.0000000000000060.
    1. Dolcetti R., Dal Col J., Martorelli D., Carbone A., Klein E. Interplay among viral antigens, cellular pathways and tumor microenvironment in the pathogenesis of EBV-driven lymphomas. Semin. Cancer Biol. 2013;23:441–456. doi: 10.1016/j.semcancer.2013.07.005.
    1. Linke-Serinsoz E., Fend F., Quintanilla-Martinez L. Human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) related lymphomas, pathology view point. Semin. Diagn. Pathol. 2017;34:352–363. doi: 10.1053/j.semdp.2017.04.003.
    1. Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J. Who Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC; Lyon, France: 2017.
    1. Altschuler E.L. Detection of Epstein-Barr virus in invasive breast cancers. J. Natl. Cancer Inst. 1999;91:2126–2127. doi: 10.1093/jnci/91.24.2126A.
    1. Henle G., Henle W., Diehl V. Relation of Burkitts tumor-associated herpes-type virus to infectious mononucleosis. Proc. Natl. Acad. Sci. USA. 1968;59:94–101. doi: 10.1073/pnas.59.1.94.
    1. Luzuriaga K., Sullivan J.L. Infectious mononucleosis. N. Engl. J. Med. 2010;363:1993–2000. doi: 10.1056/NEJMcp1001116.
    1. Louissaint A., Ferry J.A., Soupir C.P., Hasserjian R.P., Harris N.L., Zukerberg L.R. Infectious mononucleosis mimicking lymphoma: Distinguishing morphological and immunophenotypic features. Mod. Pathol. 2012;25:1149–1159. doi: 10.1038/modpathol.2012.70.
    1. Vockerodt M., Yap L.F., Shannon-Lowe C., Curley H., Wei W.B., Vrzalikova K., Murray P.G. The Epstein-Barr virus and the pathogenesis of lymphoma. J. Pathol. 2015;235:312–322. doi: 10.1002/path.4459.
    1. Thorley-Lawson D.A., Hawkins J.B., Tracy S.I., Shapiro M. The pathogenesis of Epstein-Barr virus persistent infection. Curr. Opin. Virol. 2013;3:227–232. doi: 10.1016/j.coviro.2013.04.005.
    1. Oyama T., Yamamoto K., Asano N., Oshiro A., Suzuki R., Kagami Y., Morishima Y., Takeuchi K., Izumo T., Mori S., et al. Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: A study of 96 patients. Clin. Cancer Res. 2007;13:5124–5132. doi: 10.1158/1078-0432.CCR-06-2823.
    1. Dojcinov S.D., Venkataraman G., Pittaluga S., Wlodarska I., Schrager J.A., Raffeld M., Hills R.K., Jaffe E.S. Age-related EBV-associated lymphoproliferative disorders in the western population: A spectrum of reactive lymphoid hyperplasia and lymphoma. Blood. 2011;117:4726–4735. doi: 10.1182/blood-2010-12-323238.
    1. Oyama T., Ichimura K., Suzuki R., Suzumiya J., Ohshima K., Yatabe Y., Yokoi T., Kojima M., Kamiya Y., Taji H., et al. Senile EBV plus B-cell lymphoproliferative disorders—A clinicopathologic study of 22 patients. Am. J. Surg. Pathol. 2003;27:16–26. doi: 10.1097/00000478-200301000-00003.
    1. Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J., Vardiman J.W. Who Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC; Lyon, France: 2008.
    1. Nicolae A., Pittaluga S., Abdullah S., Steinberg S.M., Pham T.A., Davies-Hill T., Xi L.Q., Raffeld M., Jaffe E.S. EBV-positive large B-cell lymphomas in young patients: A nodal lymphoma with evidence for a tolerogenic immune environment. Blood. 2015;126:863–872. doi: 10.1182/blood-2015-02-630632.
    1. Uccini S., Al-Jadiry M.F., Scarpino S., Ferraro D., Alsaadawi A.R., Al-Darraji A.F., Moleti M.L., Testi A.M., Al-Hadad S.A., Ruco L. Epstein-Barr virus-positive diffuse large B-cell lymphoma in children: A disease reminiscent of Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly. Hum. Pathol. 2015;46:716–724. doi: 10.1016/j.humpath.2015.01.011.
    1. Cohen M., De Matteo E., Narbaitz M., Carreno F.A., Preciado M.V., Chabay P.A. Epstein-Barr virus presence in pediatric diffuse large B-cell lymphoma reveals a particular association and latency patterns: Analysis of viral role in tumor microenvironment. Int. J. Cancer. 2013;132:1572–1580. doi: 10.1002/ijc.27845.
    1. Hoeller S., Tzankov A., Pileri S.A., Went P., Dirnhofer S. Epstein-Barr virus positive diffuse large B-cell lymphoma in elderly patients is rare in western populations. Hum. Pathol. 2010;41:352–357. doi: 10.1016/j.humpath.2009.07.024.
    1. Hofscheier A., Ponciano A., Bonzheim I., Adam P., Lome-Maldonado C., Vela T., Cortes E., Ortiz-Hidalgo C., Fend F., Quintanilla-Martinez L. Geographic variation in the prevalence of Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly: A comparative analysis of a mexican and a german population. Mod. Pathol. 2011;24:1046–1054. doi: 10.1038/modpathol.2011.62.
    1. Ok C.Y., Papathomas T.G., Medeiros L.J., Young K.H. EBV-positive diffuse large B-cell lymphoma of the elderly. Blood. 2013;122:328–340. doi: 10.1182/blood-2013-03-489708.
    1. Liang J.H., Lu T.X., Tian T., Wang L., Fan L., Xu J., Zhang R., Gong Q.X., Zhang Z.H., Li J.Y., et al. Epstein-Barr virus (EBV) DNA in whole blood as a superior prognostic and monitoring factor than EBV-encoded small RNA in situ hybridization in diffuse large B-cell lymphoma. Clin. Microbiol. Infect. 2015;21:596–602. doi: 10.1016/j.cmi.2015.02.017.
    1. Hong J.Y., Ko Y.H., Kim S.J., Kim W.S. Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly: A concise review and update. Curr. Opin. Oncol. 2015;27:392–398. doi: 10.1097/CCO.0000000000000210.
    1. Cohen M., Narbaitz M., Metrebian F., De Matteo E., Preciado M.V., Chabay P.A. Epstein-Barr virus-positive diffuse large B-cell lymphoma association is not only restricted to elderly patients. Int. J. Cancer. 2014;135:2816–2824. doi: 10.1002/ijc.28942.
    1. Asano N., Yamamoto K., Tamaru J.I., Oyama T., Ishida F., Ohshima K., Yoshino T., Nakamura N., Mori S., Yoshie O., et al. Age-related Epstein-Barr virus (EBV)-associated B-cell lymphoproliferative disorders: Comparison with EBV-positive classic Hodgkin lymphoma in elderly patients. Blood. 2009;113:2629–2636. doi: 10.1182/blood-2008-06-164806.
    1. Montes-Moreno S., Odqvist L., Diaz-Perez J.A., Lopez A.B., de Villambrosia S.G., Mazorra F., Castillo M.E., Lopez M., Pajares R., Garcia J.F., et al. EBV-positive diffuse large B-cell lymphoma of the elderly is an aggressive post-germinal center B-cell neoplasm characterized by prominent nuclear factor-kB activation. Mod. Pathol. 2012;25:968–982. doi: 10.1038/modpathol.2012.52.
    1. Olsson J., Wikby A., Johansson B., Lofgren S., Nilsson B.O., Ferguson F.G. Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: The swedish longitudinal OCTO immune study. Mech. Ageing Dev. 2000;121:187–201. doi: 10.1016/S0047-6374(00)00210-4.
    1. Vescovini R., Telera A., Fagnoni F.F., Biasini C., Medici M.C., Valcavi P., di Pede P., Lucchini G., Zanlari L., Passeri G., et al. Different contribution of EBV and cmv infections in very long-term carriers to age-related alterations of CD8(+) T cells. Exp. Gerontol. 2004;39:1233–1243. doi: 10.1016/j.exger.2004.04.004.
    1. Cardenas D., Velez G., Orfao A., Herrera M.V., Solano J., Olaya M., Uribe A.M., Saavedra C., Duarte M., Rodriguez M., et al. Epstein-Barr virus-specific CD8(+) t lymphocytes from diffuse large B cell lymphoma patients are functionally impaired. Clin. Exp. Immunol. 2015;182:173–183. doi: 10.1111/cei.12682.
    1. White R.E., Ramer P.C., Naresh K.N., Meixlsperger S., Pinaud L., Rooney C., Savoldo B., Coutinho R., Bodor C., Gribben J., et al. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J. Clin. Investig. 2012;122:1487–1502. doi: 10.1172/JCI58092.
    1. Gibier J.B., Bouchindhomme B., Dubois R., Hivert B., Grardel N., Copin M.C. Coexistence of age-related EBV-associated follicular hyperplasia and large B-cell EBV plus lymphoma of the elderly. Two distinct features of the same T-cell dysfunction related to senescence? Pathol. Res. Pract. 2017;213:277–280. doi: 10.1016/j.prp.2016.12.012.
    1. Kunitomi A., Hasegawa Y., Asano N., Kato S., Tokunaga T., Miyata Y., Iida H., Nagai H. EBV-positive reactive hyperplasia progressed into EBV-positive diffuse large B-cell lymphoma of the elderly over a 6-year period. Intern. Med. 2017 doi: 10.2169/internalmedicine.9112-17.
    1. De la Hera Magallanes A.I., Montes-Moreno S., Hernandez S.G., Hernandez-Leon C.N., Lopez M., Pajares R., Pinilla S.M., Piris M.A. Early phase of Epstein-Barr virus (EBV)-positive diffuse large B cell lymphoma of the elderly mimicking EBV-positive reactive follicular hyperplasia. Histopathology. 2011;59:571–575. doi: 10.1111/j.1365-2559.2011.03950.x.
    1. Yoon H., Park S., Ju H., Ha S.Y., Sohn I., Jo J., Do I.G., Min S., Kim S.J., Kim W.S., et al. Integrated copy number and gene expression profiling analysis of Epstein-Barr virus-positive diffuse large B-cell lymphoma. Genes Chromosome Cancer. 2015;54:383–396. doi: 10.1002/gcc.22249.
    1. Kato H., Karube K., Yamamoto K., Takizawa J., Tsuzuki S., Yatabe Y., Kanda T., Katayama M., Ozawa Y., Ishitsuka K., et al. Gene expression profiling of Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly reveals alterations of characteristic oncogenetic pathways. Cancer Sci. 2014;105:537–544. doi: 10.1111/cas.12389.
    1. Ok C.Y., Li L., Xu-Monette Z.Y., Visco C., Tzankov A., Manyam G.C., Dybkaer K. Prevalence and clinical implications of Epstein-Barr virus infection in de novo diffuse large B-cell lymphoma in western countries. Clin. Cancer Res. 2014;20:2338–2349. doi: 10.1158/1078-0432.CCR-13-3157.
    1. Gebauer N., Gebauer J., Hardel T.T., Bernard V., Biersack H., Lehnert H., Rades D., Feller A.C., Thorns C. Prevalence of targetable oncogenic mutations and genomic alterations in Epstein-Barr virus-associated diffuse large B-cell lymphoma of the elderly. Leuk. Lymphoma. 2015;56:1100–1106. doi: 10.3109/10428194.2014.944522.
    1. Dojcinov S.D., Venkataraman G., Raffeld M., Pittaluga S., Jaffe E.S. EBV positive mucocutaneous ulcer-a study of 26 cases associated with various sources of immunosuppression. Am. J. Surg. Pathol. 2010;34:405–417. doi: 10.1097/PAS.0b013e3181cf8622.
    1. Pugh M.R., Morgan M., Dojcinov S.D. Ipilimumab induced colitis: Is the Epstein Barr virus (EBV) implicated? J. Pathol. 2016;240:23.
    1. Iuchi K., Ichimiya A., Akashi A., Mizuta T., Lee Y.E., Tada H., Mori T., Sawamura K., Lee Y.S., Furuse K., et al. Non-hodgkins-lymphoma of the pleural cavity developing from long-standing pyothorax. Cancer. 1987;60:1771–1775. doi: 10.1002/1097-0142(19871015)60:8<1771::AID-CNCR2820600817>;2-2.
    1. Ascani S., Piccioli M., Poggi S., Briskomatis A., Bolis G.B., Liberati F., Frongillo R., Caramatti C., Fraternali-Orcioni G., Gamberi B., et al. Pyothorax-associated lymphoma: Description of the first two cases detected in italy. Ann. Oncol. 1997;8:1133–1138. doi: 10.1023/A:1008285708096.
    1. Martin A., Capron F., Liguorybrunaud M.D., Defrejacques C., Pluot M., Diebold J. Epstein-Barr virus-associated primary malignant-lymphomas of the pleural cavity occurring in longstanding pleural chronic inflammation. Hum. Pathol. 1994;25:1314–1318. doi: 10.1016/0046-8177(94)90091-4.
    1. Petitjean B., Jardin F., Joly B., Martin-Garcia N., Tilly H., Picquenot J.M., Briere J., Danel C., Mehaut S., Abd-Al-Samad I., et al. Pyothorax-associated lymphoma—A peculiar clinicopathologic entity derived from B cells at late stage of differentiation and with occasional aberrant dual B- and T-cell phenotype. Am. J. Surg. Pathol. 2002;26:724–732. doi: 10.1097/00000478-200206000-00005.
    1. Nakatsuka S., Yao M., Hoshida Y., Yamamoto S., Iuchi K., Aozasa K. Pyothorax-associated lymphoma: A review of 106 cases. J. Clin. Oncol. 2002;20:4255–4260. doi: 10.1200/JCO.2002.09.021.
    1. Narimatsu H., Ota Y., Kami M., Takeuchi K., Suzuki R., Matsuo K., Matsumura T., Yuji K., Kishi Y., Hamaki T., et al. Clinicopathological features of pyothorax-associated lymphoma; a retrospective survey involving 98 patients. Ann. Oncol. 2007;18:122–128. doi: 10.1093/annonc/mdl349.
    1. Cheuk W., Chan A.C.L., Chan J.K.C., Lau G.T.C., Chan V.N.H., Yiu H.H.Y. Metallic implant-associated lymphoma—A distinct subgroup of large B-cell lymphoma related to pyothorcix-associated lymphoma? Am. J. Surg. Pathol. 2005;29:832–836. doi: 10.1097/01.pas.0000157747.10967.f4.
    1. CopieBergman C., Niedobitek G., Mangham D.C., Selves J., Baloch K., Diss T.C., Knowles D.N., Delsol G., Isaacson P.G. Epstein-Barr virus in B-cell lymphomas associated with chronic suppurative inflammation. J. Pathol. 1997;183:287–292. doi: 10.1002/(SICI)1096-9896(199711)183:3<287::AID-PATH932>;2-Q.
    1. Fujimoto M., Haga H., Okamoto M., Obara E., Ishihara M., Mizuta N., Nishimura K., Manabe T. EBV-associated diffuse large B-cell lymphoma arising in the chest wall with surgical mesh implant. Pathol. Int. 2008;58:668–671. doi: 10.1111/j.1440-1827.2008.02288.x.
    1. Aozasa K., Takakuwa T., Nakatsuka S. Pyothorax-associated lymphoma—A lymphoma developing in chronic inflammation. Adv. Anat. Pathol. 2005;12:324–331. doi: 10.1097/01.pap.0000194627.50878.02.
    1. Tomita S., Mori K.L., Sakajiri S., Oshimi K. B-cell marker negative (CD7(+), CD19(−)) Epstein-Barr virus-related pyothorax-associated lymphoma with rearrangement in the JH gene. Leuk. Lymphoma. 2003;44:727–730. doi: 10.1080/1042819021000055075.
    1. Kanno H., Yasunaga Y., Iuchi K., Yamauchi S., Takekawa T., Sugiyama H., Aozasa K. Interleukin-6-mediated growth enhancement of cell lines derived from pyothorax-associated lymphoma. Lab. Investig. 1996;75:167–173.
    1. Miwa H., Takakuwa T., Nakatsuka S., Tomita Y., Iuchi K., Aozasa K. DNA sequences of the immunoglobulin heavy chain variable region gene in pyothorax-associated lymphoma. Oncology. 2002;62:241–250. doi: 10.1159/000059572.
    1. Takakuwa T., Luo W.J., Ham M.F., Mizuki M., Iuchi K., Aozasa K. Establishment and characterization of unique cell lines derived from pyothorax-associated lymphoma which develops in long-standing pyothorax and is strongly associated with Epstein-Barr virus infection. Cancer Sci. 2003;94:858–863. doi: 10.1111/j.1349-7006.2003.tb01367.x.
    1. Yamato H., Ohshima K., Suzumiya J., Kikuchi M. Evidence for local immunosuppression and demonstration of c-myc amplification in pyothorax-associated lymphoma. Histopathology. 2001;39:163–171. doi: 10.1046/j.1365-2559.2001.01197.x.
    1. Hongyo T., Kuraoka M., Taniguchi E., Iuchi K., Nakajima Y., Aozasa K., Nomura T. Frequent p53 mutations at dipyrimidine sites in patients with pyothorax-associated lymphoma. Cancer Res. 1998;58:1105–1107.
    1. Ando M., Sato Y., Takata K., Nomoto J., Nakamura S., Ohshima K., Takeuchi T., Orita Y., Kobayashi Y., Yoshino T. A20 (TNFAIP3) deletion in Epstein-Barr virus-associated lymphoproliferative disorders/lymphomas. PLoS ONE. 2013;8:e56741. doi: 10.1371/journal.pone.0056741.
    1. Nishiu M., Tomita Y., Nakatsuka S., Takakuwa T., Iizuka N., Hoshida Y., Ikeda J., Iuchi K., Yanagawa R., Nakamura Y., et al. Distinct pattern of gene expression in pyothorax-associated lymphoma (PAL), a lymphoma developing in long-standing inflammation. Cancer Sci. 2004;95:828–834. doi: 10.1111/j.1349-7006.2004.tb02189.x.
    1. Boyer D.F., McKelvie P.A., de Leval L., Edlefsen K.L., Ko Y.H., Aberman Z.A., Kovach A.E., Masih A., Nishino H.T., Weiss L.M., et al. Fibrin-associated EBV-positive large B-cell lymphoma an indolent neoplasm with features distinct from diffuse large B-cell lymphoma associated with chronic inflammation. Am. J. Surg. Pathol. 2017;41:299–312. doi: 10.1097/PAS.0000000000000775.
    1. Miller D.V., Firchau D.J., McClure R.F., Kurtin P.J., Feldman A.L. Epstein-Barr virus-associated diffuse large B-cell lymphoma arising on cardiac prostheses. Am. J. Surg. Pathol. 2010;34:377–384. doi: 10.1097/PAS.0b013e3181ce9128.
    1. Aguilar C., Beltran B., Quinones P., Carbajal T., Vilcapaza J., Yabar A., Segura P., Quintanilla-Martinez L., Miranda R.N., Castillo J.J. Large B-cell lymphoma arising in cardiac myxoma or intracardiac fibrinous mass: A localized lymphoma usually associated with Epstein-Barr virus? Cardiovasc. Pathol. 2015;24:60–64. doi: 10.1016/j.carpath.2014.08.007.
    1. Gruver A.M., Huba M.A., Dogan A., Hsi E.D. Fibrin-associated large B-cell lymphoma part of the spectrum of cardiac lymphomas. Am. J. Surg. Pathol. 2012;36:1527–1537. doi: 10.1097/PAS.0b013e31825d53b5.
    1. Boroumand N., Ly T.L., Sonstein J., Medeiros L.J. Microscopic diffuse large B-cell lymphoma (DLBCL) occurring in pseudocysts do these tumors belong to the category of DLBCLassociated with chronic inflammation? Am. J. Surg. Pathol. 2012;36:1074–1080. doi: 10.1097/PAS.0b013e3182515fb5.
    1. Liebow A.A., Carrington C.R., Friedman P.J. Lymphomatoid granulomatosis. Hum. Pathol. 1972;3:457–558. doi: 10.1016/S0046-8177(72)80005-4.
    1. Guinee D., Jaffe E., Kingma D., Fishback N., Wallberg K., Krishnan J., Frizzera G., Travis W., Koss M. Pulmonary lymphomatoid granulomatosis—Evidence for a proliferation of Epstein-Barr-virus infected B-lymphocytes with a prominent T-cell component and vasculitis. Am. J. Surg. Pathol. 1994;18:753–764. doi: 10.1097/00000478-199408000-00001.
    1. Song J.Y., Pittaluga S., Dunleavy K., Grant N., White T., Jiang L.Y., Davies-Hill T., Raffeld M., Wilson W.H., Jaffe E.S. Lymphomatoid granulomatosis—A single institute experience pathologic findings and clinical correlations. Am. J. Surg. Pathol. 2015;39:141–156. doi: 10.1097/PAS.0000000000000328.
    1. Wilson W.H., Kingma D.W., Raffeld M., Wittes R.E., Jaffe E.S. Association of lymphomatoid granulomatosis with Epstein-Barr viral infection of B lymphocytes and response to interferon-alpha 2B. Blood. 1996;87:4531–4537.
    1. Beaty M.W., Toro J., Sorbara L., Stern J.B., Pittaluga S., Raffeld M., Wilson W.H., Jaffe E.S. Cutaneous lymphomatoid granulomatosis—Correlation of clinical and biologic features. Am. J. Surg. Pathol. 2001;25:1111–1120. doi: 10.1097/00000478-200109000-00001.
    1. Katzenstein A.L.A., Carrington C.B., Liebow A.A. Lymphomatoid granulomatosis—Clinicopathologic study of 152 cases. Cancer. 1979;43:360–373. doi: 10.1002/1097-0142(197901)43:1<360::AID-CNCR2820430151>;2-8.
    1. Dunleavy K., Roschewski M., Wilson W.H. Lymphomatoid granulomatosis and other Epstein-Barr virus associated lymphoproliferative processes. Curr. Hematol. Malig. Rep. 2012;7:208–215. doi: 10.1007/s11899-012-0132-3.
    1. TeruyaFeldstein J., Jaffe E.S., Burd P.R., Kanegane H., Kingma D.W., Wilson W.H., Longo D.L., Tosato G. The role of Mig, the monokine induced by interferon-gamma, and IP-10, the interferon-gamma-inducible protein-10, in tissue necrosis and vascular damage associated with Epstein-Barr virus-positive lymphoproliferative disease. Blood. 1997;90:4099–4105.
    1. Delecluse H.J., Anagnostopoulos I., Dallenbach F., Hummel M., Marafioti T., Schneider U., Huhn D., SchmidtWesthausen A., Reichart P.A., Gross U., et al. Plasmablastic lymphomas of the oral cavity: A new entity associated with the human immunodeficiency virus infection. Blood. 1997;89:1413–1420.
    1. Teruya-Feldstein J., Chiao E., Filippa D.A., Lin O., Comenzo R., Coleman M., Portlock C., Noy A. CD20-negative large-cell lymphoma with plasmablastic features: A clinically heterogenous spectrum in both HIV-positive and -negative patients. Ann. Oncol. 2004;15:1673–1679. doi: 10.1093/annonc/mdh399.
    1. Morscio J., Dierickx D., Nijs J., Verhoef G., Bittoun E., Vanoeteren X., Wlodarska I., Sagaert X., Tousseyn T. Clinicopathologic comparison of plasmablastic lymphoma in HIV-positive, immunocompetent, and posttransplant patients single-center series of 25 cases and meta-analysis of 277 reported cases. Am. J. Surg. Pathol. 2014;38:875–886. doi: 10.1097/PAS.0000000000000234.
    1. Castillo J.J., Bibas M., Miranda R.N. The biology and treatment of plasmablastic lymphoma. Blood. 2015;125:2323–2330. doi: 10.1182/blood-2014-10-567479.
    1. Colomo L., Loong F., Rives S., Pittaluga S., Martinez A., Lopez-Guillermo A., Ojanguren J., Romagosa V., Jaffe E.S., Campo E. Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. Am. J. Surg. Pathol. 2004;28:736–747. doi: 10.1097/01.pas.0000126781.87158.e3.
    1. Montes-Moreno S., Gonzalez-Medina A.R., Rodriguez-Pinilla S.M., Maestre L., Sanchez-Verde L., Roncador G., Mollejo M., Garcia J.F., Menarguez J., Montalban C., et al. Aggressive large B-cell lymphoma with plasma cell differentiation: Immunohistochemical characterization of plasmablastic lymphoma and diffuse large B-cell lymphoma with partial plasmablastic phenotype. Haematologica. 2010;95:1342–1349. doi: 10.3324/haematol.2009.016113.
    1. Montes-Moreno S., Martinez-Magunacelaya N., Zecchini-Barrese T., de Villambrosia S.G., Linares E., Ranchal T., Rodriguez-Pinilla M., Batlle A., Cereceda-Company L., Revert-Arce J.B., et al. Plasmablastic lymphoma phenotype is determined by genetic alterations in MYC and PRDM1. Mod. Pathol. 2017;30:85–94. doi: 10.1038/modpathol.2016.162.
    1. Castillo J., Pantanowitz L., Dezube B.J. HIV-associated plasmablastic lymphoma: Lessons learned from 112 published cases. Am. J. Hematol. 2008;83:804–809. doi: 10.1002/ajh.21250.
    1. Harmon C.M., Smith L.B. Plasmablastic lymphoma a review of clinicopathologic features and differential diagnosis. Arch. Pathol. Lab. Med. 2016;140:1074–1078. doi: 10.5858/arpa.2016-0232-RA.
    1. Carbone A., Gloghini A. Plasmablastic lymphoma: One or more entities? Am. J. Hematol. 2008;83:763–764. doi: 10.1002/ajh.21259.
    1. Valera A., Balague O., Colomo L., Martinez A., Delabie J., Taddesse-Heath L., Jaffe E.S., Campo E. IG/MYC rearrangements are the main cytogenetic alteration in plasmablastic lymphomas. Am. J. Surg. Pathol. 2010;34:1686–1694. doi: 10.1097/PAS.0b013e3181f3e29f.
    1. Chapman J., Gentles A.J., Sujoy V., Vega F., Dumur C.I., Blevins T.L., Bernal-Mizrachi L., Mosunjac M., Pimentel A., Zhu D., et al. Gene expression analysis of plasmablastic lymphoma identifies downregulation of B-cell receptor signaling and additional unique transcriptional programs. Leukemia. 2015;29:2270–2273. doi: 10.1038/leu.2015.109.
    1. Burkitt D. A sarcoma involving the jaws in african children. Br. J. Surg. 1958;46:218–223. doi: 10.1002/bjs.18004619704.
    1. Burkitt D., Wright D.H. A lymphoma syndrome in tropical Africa with a note on histology, cytology and histochemistry. Int. Rev. Exp. Pathol. 1963;2:67–138.
    1. Molyneux E.M., Rochford R., Griffin B., Newton R., Jackson G., Menon G., Harrison C.J., Israels T., Bailey S. Burkitt’s lymphoma. Lancet. 2012;379:1234–1244. doi: 10.1016/S0140-6736(11)61177-X.
    1. Moormann A.M., Bailey J.A. Malaria—How this parasitic infection aids and abets EBV-associated Burkitt lymphomagenesis. Curr. Opin. Virol. 2016;20:78–84. doi: 10.1016/j.coviro.2016.09.006.
    1. Queiroga E.M., Gualco G., Weiss L.M., Dittmer D.P., Araujo I., Klumb C.E.N., Harrington W.J., Bacchi C.E. Burkitt lymphoma in Brazil is characterized by geographically distinct clinicopathologic features. Am. J. Clin. Pathol. 2008;130:946–956. doi: 10.1309/AJCP64YOHAWLUMPK.
    1. Carroll V., Garzino-Demo A. HIV-associated lymphoma in the era of combination antiretroviral therapy: Shifting the immunological landscape. Pathog. Dis. 2015;73 doi: 10.1093/femspd/ftv044.
    1. Rimsza L., Pittaluga S., Dirnhofer S., Copie-Bergman C., de Leval L., Facchetti F., Pileri S., Rosenwald A., Wotherspoon A., Fend F. The clinicopathologic spectrum of mature aggressive B cell lymphomas. Virchows Arch. 2017;471:453–466. doi: 10.1007/s00428-017-2199-7.
    1. Hummel M., Bentink S., Berger H., Klapper W., Wessendorf S., Barth T.F.E., Bernd H.W., Cogliatti S.B., Dierlamm J., Feller A.C., et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N. Engl. J. Med. 2006;354:2419–2430. doi: 10.1056/NEJMoa055351.
    1. Dallafavera R., Martinotti S., Gallo R.C., Erikson J., Croce C.M. Translocation and rearrangements of the c-MYC oncogene locus in human undifferentiated B-cell lymphomas. Science. 1983;219:963–967. doi: 10.1126/science.6401867.
    1. Zeller K.I., Zhao X.D., Lee C.W.H., Chiu K.P., Yao F., Yustein J.T., Ooi H.S., Orlov Y.L., Shahab A., Yong H.C., et al. Global mapping of c-MYC binding sites and target gene networks in human B cells. Proc. Natl. Acad. Sci. USA. 2006;103:17834–17839. doi: 10.1073/pnas.0604129103.
    1. Lindstrom M.S., Wiman K.G. Role of genetic and epigenetic changes in Burkitt lymphoma. Semin. Cancer Biol. 2002;12:381–387. doi: 10.1016/S1044-579X(02)00058-5.
    1. Komano J., Sugiura M., Takada K. Epstein-Barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt’s lymphoma cell line akata. J. Virol. 1998;72:9150–9156.
    1. Nanbo A., Takada K. The role of Epstein-Barr virus-encoded small RNAs (EBERs) in oncogenesis. Rev. Med. Virol. 2002;12:321–326. doi: 10.1002/rmv.363.
    1. Lu J., Murakami M., Verma S.C., Cai Q.L., Haldar S., Kaul R., Wasik M.A., Middeldorp J., Robertson E.S. Epstein-Barr virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology. 2011;410:64–75. doi: 10.1016/j.virol.2010.10.029.
    1. Dheekollu J., Malecka K., Wiedmer A., Delecluse H.J., Chiang A.K.S., Altieri D.C., Messick T.E., Lieberman P.M. Carcinoma-risk variant of EBNA1 deregulates Epstein-Barr virus episomal latency. Oncotarget. 2017;8:7248–7264. doi: 10.18632/oncotarget.14540.
    1. Fish K., Chen J., Longnecker R. Epstein-Barr virus latent membrane protein 2A enhances MYC-driven cell cycle progression in a mouse model of B lymphoma. Blood. 2014;123:530–540. doi: 10.1182/blood-2013-07-517649.
    1. Sander S., Calado D.P., Srinivasan L., Kochert K., Zhang B.C., Rosolowski M., Rodig S.J., Holzmann K., Stilgenbauer S., Siebert R., et al. Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell. 2012;22:167–179. doi: 10.1016/j.ccr.2012.06.012.
    1. Sander S., Rajewsky K. Burkitt lymphomagenesis linked to MYC plus PI3K in germinal center B cells. Oncotarget. 2012;3:1066–1067. doi: 10.18632/oncotarget.726.
    1. Robbiani D.F., Bothmer A., Callen E., Reina-San-Martin B., Dorsett Y., Difilippantonio S., Bolland D.J., Chen H.T., Corcoran A.E., Nussenzweig A., et al. Aid is required for the chromosomal breaks in c-MYC that lead to c-MYC/IGH translocations. Cell. 2008;135:1028–1038. doi: 10.1016/j.cell.2008.09.062.
    1. Kalchschmidt J.S., Bashford-Rogers R., Paschos K., Gillman A.C.T., Styles C.T., Kellam P., Allday M.J. Epstein-Barr virus nuclear protein EBNA3C directly induces expression of aid and somatic mutations in B cells. J. Exp. Med. 2016;213:921–928. doi: 10.1084/jem.20160120.
    1. Robbiani D.F., Deroubaix S., Feldhahn N., Oliveira T.Y., Callen E., Wang Q., Jankovic M., Silva I.T., Rommel P.C., Bosque D., et al. Plasmodium infection promotes genomic instability and aid-dependent B cell lymphoma. Cell. 2015;162:727–737. doi: 10.1016/j.cell.2015.07.019.
    1. Abate F., Ambrosio M.R., Mundo L., Laginestra M.A., Fuligni F., Rossi M., Zairis S., Gazaneo S., De Falco G., Lazzi S., et al. Distinct viral and mutational spectrum of endemic Burkitt lymphoma. PLoS Pathog. 2015;11:e1005158. doi: 10.1371/journal.ppat.1005158.
    1. Tierney R.J., Shannon-Lowe C.D., Fitzsimmons L., Bell A.I., Rowe M. Unexpected patterns of Epstein-Barr virus transcription revealed by a high throughput PCR array for absolute quantification of viral mRNA. Virology. 2015;474:117–130. doi: 10.1016/j.virol.2014.10.030.
    1. Peliccci P.G., Knowles D.M., Magrath I., Dalla-Favera R. Chromosomal breakpoints and structural alterations of the c-MYC locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc. Natl. Acad. Sci. USA. 1986;83:2984–2988. doi: 10.1073/pnas.83.9.2984.
    1. Amato T., Abate F., Piccaluga P., Iacono M., Fallerini C., Renieri A., De Falco G., Ambrosio M.R., Mourmouras V., Ogwang M., et al. Clonality analysis of immunoglobulin gene rearrangement by next-generation sequencing in endemic Burkitt lymphoma suggests antigen drive activation of BCR as opposed to sporadic Burkitt lymphoma. Am. J. Clin. Pathol. 2016;145:116–127. doi: 10.1093/ajcp/aqv011.
    1. Schmitz R., Young R.M., Ceribelli M., Jhavar S., Xiao W.M., Zhang M.Z., Wright G., Shaffer A.L., Hodson D.J., Buras E., et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490:116–120. doi: 10.1038/nature11378.
    1. Love C., Sun Z., Jima D., Li G.J., Zhang J., Miles R., Richards K.L., Dunphy C.H., Choi W.W.L., Srivastava G., et al. The genetic landscape of mutations in Burkitt lymphoma. Nat. Genet. 2012;44:1321–1325. doi: 10.1038/ng.2468.
    1. Richter J., Schlesner M., Hoffmann S., Kreuz M., Leich E., Burkhardt B., Rosolowski M., Ammerpohl O., Wagener R., Bernhart S.H., et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat. Genet. 2012;44:1316–1320. doi: 10.1038/ng.2469.
    1. Giulino-Roth L., Wang K., MacDonald T.Y., Mathew S., Tam Y., Cronin M.T., Palmer G., Lucena-Silva N., Pedrosa F., Pedrosa M., et al. Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood. 2012;120:5181–5184. doi: 10.1182/blood-2012-06-437624.
    1. Mundo L., Ambrosio M.R., Picciolini M., Lo Bello G., Gazaneo S., Del Porro L., Lazzi S., Navari M., Onyango N., Granai M., et al. Unveiling another missing piece in EBV-driven lymphomagenesis: EBV-encoded microRNAs expression in EBER-negative Burkitt lymphoma cases. Front. Microbiol. 2017;8:229. doi: 10.3389/fmicb.2017.00229.
    1. Leucci E., Cocco M., Onnis A., De Falco G., van Cleef P., Bellan C., van Rijk A., Nyagol J., Byakika B., Lazzi S., et al. MYC translocation-negative classical Burkitt lymphoma cases: An alternative pathogenetic mechanism involving miRNA deregulation. J. Pathol. 2008;216:440–450. doi: 10.1002/path.2410.
    1. Salaverria I., Martin-Guerrero I., Wagener R., Kreuz M., Kohler C.W., Richter J., Pienkowska-Grela B., Adam P., Burkhardt B., Claviez A., et al. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood. 2014;123:1187–1198. doi: 10.1182/blood-2013-06-507996.
    1. Weiss L.M., Movahed L.A., Warnke R.A., Sklar J. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkins-disease. N. Engl. J. Med. 1989;320:502–506. doi: 10.1056/NEJM198902233200806.
    1. Thomas R.K., Re D., Zander T., Wolf J., Diehl V. Epidemiology and etiology of Hodgkin’s lymphoma. Ann. Oncol. 2002;13:147–152. doi: 10.1093/annonc/mdf652.
    1. Kanzler H., Kuppers R., Hansmann M.L., Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J. Exp. Med. 1996;184:1495–1505. doi: 10.1084/jem.184.4.1495.
    1. Kuppers R., Rajewsky K., Zhao M., Simons G., Laumann R., Fischer R., Hansmann M.L. Hodgkin disease—Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B-cells at various stages of development. Proc. Natl. Acad. Sci. USA. 1994;91:10962–10966. doi: 10.1073/pnas.91.23.10962.
    1. Schwering I., Brauninger A., Klein U., Jungnickel B., Tinguely M., Diehl V., Hansmann M.L., Dalla-Favera R., Rajewsky K., Kuppers R. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;101:1505–1512. doi: 10.1182/blood-2002-03-0839.
    1. Stein H., Marafioti T., Foss H.D., Laumen H., Hummel M., Anagnostopoulos I., Wirth T., Demel G., Falini B. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant hodgkin disease correlates with immunoglobulin transcription. Blood. 2001;97:496–501. doi: 10.1182/blood.V97.2.496.
    1. Krenacs L., Himmelmann A.W., Quintanilla-Martinez L., Fest T., Riva A., Wellmann A., Bagdi E., Kehrl J.H., Jaffe E.S., Raffeld M. Transcription factor B-cell-specific activator protein (BSAP) is differentially expressed in B cells and in subsets of B-cell lymphomas. Blood. 1998;92:1308–1316.
    1. Pallesen G., Hamiltondutoit S.J., Rowe M., Young L.S. Expression of Epstein-Barr-virus latent gene-products in tumor-cells of Hodgkins-disease. Lancet. 1991;337:320–322. doi: 10.1016/0140-6736(91)90943-J.
    1. Herbst H., Dallenbach F., Hummel M., Niedobitek G., Pileri S., Mullerlantzsch N., Stein H. Epstein-Barr-virus latent membrane-protein expression in Hodgkin and Reed-Sternberg cells. Proc. Natl. Acad. Sci. USA. 1991;88:4766–4770. doi: 10.1073/pnas.88.11.4766.
    1. Anagnostopoulos I., Herbst H., Niedobitek G., Stein H. Demonstration of monoclonal EBV genomes in Hodgkins-disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood. 1989;74:810–816.
    1. Kuppers R. The biology of hodgkin’s lymphoma. Nat. Rev. Cancer. 2009;9:15–27. doi: 10.1038/nrc2542.
    1. Brauninger A., Schmitz R., Bechtel D., Renne C., Hausmann M.L., Kuppers R. Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int. J. Cancer. 2006;118:1853–1861. doi: 10.1002/ijc.21716.
    1. Niedobitek G., Kremmer E., Herbst H., Whitehead L., Dawson C.W., Niedobitek E., vonOstau C., Rooney N., Grasser F.A., Young L.S. Immunohistochemical detection of the Epstein-Barr virus-encoded latent membrane protein 2A in Hodgkin’s disease and infectious mononucleosis. Blood. 1997;90:1664–1672.
    1. Mancao C., Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood. 2007;110:3715–3721. doi: 10.1182/blood-2007-05-090142.
    1. Steidl C., Connors J.M., Gascoyne R.D. Molecular pathogenesis of Hodgkin’s lymphoma: Increasing evidence of the importance of the microenvironment. J. Clin. Oncol. 2011;29:1812–1826. doi: 10.1200/JCO.2010.32.8401.
    1. Vardhana S., Younes A. The immune microenvironment in Hodgkin lymphoma: T cells, B cells, and immune checkpoints. Haematologica. 2016;101:794–802. doi: 10.3324/haematol.2015.132761.
    1. Gandhi M.K., Moll G., Smith C., Dua U., Lambley E., Ramuz O., Gill D., Marlton P., Seymour J.F., Khanna R. Galectin-1 mediated suppression of Epstein-Barr virus-specific T-cell immunity in classic Hodgkin lymphoma. Blood. 2007;110:1326–1329. doi: 10.1182/blood-2007-01-066100.
    1. Green M.R., Monti S., Rodig S.J., Juszczynski P., Currie T., O’Donnell E., Chapuy B., Takeyama K., Neuberg D., Golub T.R., et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116:3268–3277. doi: 10.1182/blood-2010-05-282780.
    1. Yamamoto R., Nishikori M., Kitawaki T., Sakai T., Hishizawa M., Tashima M., Kondo T., Ohmori K., Kurata M., Hayashi T., et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111:3220–3224. doi: 10.1182/blood-2007-05-085159.
    1. Renne C., Hinsch N., Willenbrock K., Fuchs M., Klapper W., Engert A., Kuppers R., Hansmann M.L., Brauninger A. The aberrant coexpression of several receptor tyrosine kinases is largely restricted to EBV-negative cases of classical Hodgkin’s lymphoma. Int. J. Cancer. 2007;120:2504–2509. doi: 10.1002/ijc.22511.
    1. Schmitz R., Hansmann M.L., Bohle V., Martin-Subero J.I., Hartmann S., Mechtersheimer G., Klapper W., Vater I., Giefing M., Gesk S., et al. TNAFIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J. Exp. Med. 2009;206:981–989. doi: 10.1084/jem.20090528.
    1. Mao Z.R., Quintanilla-Martinez L., Raffeld M., Richter M., Krugmann J., Burek C., Hartmann E., Rudiger T., Jaffe E.S., Muller-Hermelink H.K., et al. IGVH mutational status and clonality analysis of Richter’s transformation—Diffuse large B-cell lymphoma and Hodgkin lymphoma in association with B-cell chronic lymphocytic leukemia (B-CLL) represent 2 different pathways of disease evolution. Am. J. Surg. Pathol. 2007;31:1605–1614. doi: 10.1097/PAS.0b013e31804bdaf8.
    1. Chang S.T., Liao Y.L., Lu C.L., Chuang S.S., Li C.Y. Plasmablastic cytomorphologic features in plasma cell neoplasms in immunocompetent patients are significantly associated with EBV. Am. J. Clin. Pathol. 2007;128:339–344. doi: 10.1309/27H8XJH31F3GUNAT.
    1. Aguilera N.S., Kapadia S.B., Nalesnik M.A., Swerdlow S.H. Extramedullary plasmacytoma of the head and neck—Use of paraffin sections to assess clonality with in-situ hybridization, growth fraction, and the presence of Epstein-Barr-virus. Mod. Pathol. 1995;8:503–508.
    1. Loghavi S., Khoury J.D., Medeiros L.J. Epstein-Barr virus-positive plasmacytoma in immunocompetent patients. Histopathology. 2015;67:225–234. doi: 10.1111/his.12640.
    1. Yan J.Q., Wang J.C., Zhang W.Y., Chen M., Chen J., Liu W.P. Solitary plasmacytoma associated with Epstein-Barr virus: A clinicopathologic, cytogenetic study and literature review. Ann. Diagn. Pathol. 2017;27:1–6. doi: 10.1016/j.anndiagpath.2016.09.002.
    1. Quintanilla-Martinez L., Ko Y.-H., Kimura H., Jaffe E.S. EBV-positive T-cell and NK-cell lymphoproliferative diseases of childhood. In: Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J., Arber D.A., Hasserjian R.P., Le Beau M.M., et al., editors. Who Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC; Lyon, France: 2017. pp. 355–363.
    1. Kimura H., Ito Y., Kawabe S., Gotoh K., Takahashi Y., Kojima S., Naoe T., Esaki S., Kikuta A., Sawada A., et al. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: Prospective analysis of 108 cases. Blood. 2012;119:673–686. doi: 10.1182/blood-2011-10-381921.
    1. Hong M., Ko Y.H., Yoo K.H., Koo H.H., Kim S.J., Kim W.S., Park H. EBV-positive T/NK-cell lymphoproliferative disease of childhood. Korean J. Pathol. 2013;47:137–147. doi: 10.4132/KoreanJPathol.2013.47.2.137.
    1. Suzuki K., Ohshima K., Karube K., Suzumiya J., Ohga S., Ishihara S., Tamura K., Kikuchi M. Clinicopathological states of Epstein-Barr virus-associated T/NK-cell lymphoproliferative disorders (severe chronic active EBV infection) of children and young adults. Int. J. Oncol. 2004;24:1165–1174. doi: 10.3892/ijo.24.5.1165.
    1. Wang R.C., Chang S.T., Hsieh Y.C., Huang W.T., Hsu J.D., Tseng C.E., Wang M.C., Hwang W.S., Wang J., Chuang S.S. Spectrum of Epstein-Barr virus-associated T-cell lymphoproliferative disorder in adolescents and young adults in taiwan. Int. J. Clin. Exp. Pathol. 2014;7:2430–2437.
    1. Jones J.F., Straus S.E. Chronic Epstein-Barr virus-infection. Annu. Rev. Med. 1987;38:195–209. doi: 10.1146/annurev.me.38.020187.001211.
    1. Straus S.E. The chronic mononucleosis syndrome. J. Infect. Dis. 1988;157:405–412. doi: 10.1093/infdis/157.3.405.
    1. Kimura H., Hoshino Y., Kanegane H., Tsuge I., Okamura T., Kawa K., Morishima T. Clinical and virologic characteristics of chronic active Epstein-Barr virus infection. Blood. 2001;98:280–286. doi: 10.1182/blood.V98.2.280.
    1. Kimura H. Pathogenesis of chronic active Epstein-Barr virus infection: Is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Rev. Med. Virol. 2006;16:251–261. doi: 10.1002/rmv.505.
    1. Roth D.E., Jones A., Smith L., Lai R., Preiksaitis J., Robinson J. Severe chronic active Epstein-Barr virus infection mimicking steroid-dependent inflammatory bowel disease. Pediatr. Infect. Dis. J. 2005;24:261–264. doi: 10.1097/.
    1. Richter J., Quintanilla-Martinez L., Bienemann K., Zeus T., Germing U., Sander O., Kandolf R., Haussinger D., Klingel K. An unusual presentation of a common infection. Infection. 2013;41:565–569. doi: 10.1007/s15010-012-0321-y.
    1. Isobe Y., Aritaka N., Setoguchi Y., Ito Y., Kimura H., Hamano Y., Sugimoto K., Komatsu N. T/NK cell type chronic active Epstein-Barr virus disease in adults: An underlying condition for Epstein-Barr virus-associated T/NK-cell lymphoma. J. Clin. Pathol. 2012;65:278–282. doi: 10.1136/jclinpath-2011-200523.
    1. Arai A., Imadome K.I., Watanabe Y., Yoshimori M., Koyama T., Kawaguchi T., Nakaseko C., Fujiwara S., Miura O. Clinical features of adult-onset chronic active Epstein-Barr virus infection: A retrospective analysis. Int. J. Hematol. 2011;93:602–609. doi: 10.1007/s12185-011-0831-x.
    1. Kimura H., Morishima T., Kanegane H., Ohga S., Hoshino Y., Maeda A., Imai S., Okano M., Morio T., Yokota S., et al. Prognostic factors for chronic active Epstein-Barr virus infection. J. Infect. Dis. 2003;187:527–533. doi: 10.1086/367988.
    1. Kimura H., Hoshino Y., Hara S., Sugaya N., Kawada J., Shibata Y., Kojima S., Nagasaka T., Kuzushima K., Morishima T. Differences between T cell-type and natural killer cell-type chronic active Epstein-Barr virus infection. J. Infect. Dis. 2005;191:531–539. doi: 10.1086/427239.
    1. Ohshima K., Kimura H., Yoshino T., Kim C.W., Ko Y.H., Lee S.S., Peh S.C., Chan J.K.C., Grp C.S. Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: Overlap with chronic active EBV infection and infantile fulminant EBV T-LPD. Pathol. Int. 2008;58:209–217. doi: 10.1111/j.1440-1827.2008.02213.x.
    1. Tosato G., Straus S., Henle W., Pike S.E., Blaese R.M. Characteristic T-cell dysfunction in patients with chronic active Epstein-Barr virus-infection (chronic infectious-mononucleosis) J. Immunol. 1985;134:3082–3088.
    1. Cohen J.I., Jaffe E.S., Dale J.K., Pittaluga S., Heslop H.E., Rooney C.M., Gottschalk S., Bollard C.M., Rao V.K., Marques A., et al. Characterization and treatment of chronic active Epstein-Barr virus disease: A 28-year experience in the united states. Blood. 2011;117:5835–5849. doi: 10.1182/blood-2010-11-316745.
    1. Tsuge I., Morishima T., Kimura H., Kuzushima K., Matsuoka H. Impaired cytotoxic T lymphocyte response to Epstein-Barr virus-infected NK cells in patients with severe chronic active EBV infection. J. Med. Virol. 2001;64:141–148. doi: 10.1002/jmv.1029.
    1. Sugaya N., Kimura H., Hara S., Hoshino Y., Kojima S., Morishima T., Tsurumi T., Kuzushima K. Quantitative analysis of Epstein-Barr virus (EBV)-specific CD8(+) T cells in patients with chronic active EBV infection. J. Infect. Dis. 2004;190:985–988. doi: 10.1086/423285.
    1. Imai S., Sugiura M., Oikawa O., Koizumi S., Hirao M., Kimura H., Hayashibara H., Terai N., Tsutsumi H., Oda T., et al. Epstein-Barr virus (EBV)-carrying and -expressing T-cell lines established from severe chronic active EBV infection. Blood. 1996;87:1446–1457.
    1. Quintanilla-Martinez L., Ridaura C., Nagl F., Saez-de-Ocariz M., Duran-McKinster C., Ruiz-Maldonado R., Alderete G., Grube P., Lome-Maldonado C., Bonzheim I., et al. Hydroa vacciniforme-like lymphoma: A chronic EBV+ lymphoproliferative disorder with risk to develop a systemic lymphoma. Blood. 2013;122:3101–3110. doi: 10.1182/blood-2013-05-502203.
    1. Ruizmaldonado R., Parrilla F.M., Orozcocovarrubias M.D., Ridaura C., Sanchez L.T., Mckinster C.D. Edematous, scarring vasculitic panniculitis—A new multisystemic disease with malignant potential. J. Am. Acad. Dermatol. 1995;32:37–44. doi: 10.1016/0190-9622(95)90181-7.
    1. Barrionuevo C., Anderson V.M., Zevallos-Giampietri E., Zaharia M., Misad O., Bravo J., Caceres H., Taxa L., Martinez M.T., Wachtel A., et al. Hydroa-like cutaneous T-cell lymphoma: A clinicopathologic and molecular genetic study of 16 pediatric cases from Peru. Appl Immunohistochem. Mol. Morphol. 2002;10:7–14. doi: 10.1097/00129039-200203000-00002.
    1. Iwatsuki K., Xu Z., Takata M., Iguchi M., Ohtsuka M., Akiba H., Mitsuhashi Y., Takenoshita H., Sugiuchi R., Tagami H., et al. The association of latent Epstein-Barr virus infection with hydroa vacciniforme. Br. J. Dermatol. 1999;140:715–721. doi: 10.1046/j.1365-2133.1999.02777.x.
    1. Iwatsuki K., Ohtsuka M., Akiba H., Kaneko F. Atypical hydroa vacciniforme in childhood: From a smoldering stage to Epstein-Barr virus-associated lymphoid malignancy. J. Am. Acad. Dermatol. 1999;40:283–284. doi: 10.1016/S0190-9622(99)70210-0.
    1. Magana M., Sangueza P., Gil-Beristain J., Sanchez-Sosa S., Salgado A., Ramon G., Sangueza O.P. Angiocentric cutaneous T-cell lymphoma of childhood (hydroa-like lymphoma): A distinctive type of cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 1998;38:574–579. doi: 10.1016/S0190-9622(98)70120-3.
    1. Quintanilla-Martinez L., Kimura H., Jaffe E.S. EBV-positive T-cell lymphoproliferative disorders of childhood. In: Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J., Vardiman J.W., editors. Who Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC; Lyon, France: 2008. pp. 278–280.
    1. Cho K.H., Lee S.H., Kim C.W., Jeon Y.K., Kwon I.H., Cho Y.J., Lee S.K., Suh D.H., Chung J.H., Yoon T.Y., et al. Epstein-Barr virus-associated lymphoproliferative lesions presenting as a hydroa vacciniforme-like eruption: An analysis of six cases. Br. J. Dermatol. 2004;151:372–380. doi: 10.1111/j.1365-2133.2004.06038.x.
    1. Iwatsuki K., Satoh M., Yamamoto T., Oono T., Morizane S., Ohtsuka M., Xu Z.G., Suzuki D., Tsuji K. Pathogenic link between hydroa vacciniforme and Epstein-Barr virus-associated hematologic disorders. Arch. Dermatol. 2006;142:587–595. doi: 10.1001/archderm.142.5.587.
    1. Sangueza M., Plaza J.A. Hydroa vacciniforme-like cutaneous T-cell lymphoma: Clinicopathologic and immunohistochemical study of 12 cases. J. Am. Acad. Dermatol. 2013;69:112–119. doi: 10.1016/j.jaad.2013.01.037.
    1. Rodriguez-Pinilla S.M., Barrionuevo C., Garcia J., Martinez M.T., Pajares R., Montes-Moreno S., Casavilca S., Montes J., Bravo F., Zaharia M., et al. EBV-associated cutaneous NK/T-cell lymphoma review of a series of 14 cases from Peru in children and young adults. Am. J. Surg. Pathol. 2010;34:1773–1782. doi: 10.1097/PAS.0b013e3181fbb4fd.
    1. Hirai Y., Yamamoto T., Kimura H., Ito Y., Tsuji K., Miyake T., Morizane S., Suzuki D., Fujii K., Iwatsuki K. Hydroa vacciniforme is associated with increased numbers of Epstein-Barr virus-infected gamma delta T cells. J. Investig. Dermatol. 2012;132:1401–1408. doi: 10.1038/jid.2011.461.
    1. Wada T., Toga A., Sakakibara Y., Toma T., Hasegawa M., Takehara K., Shigemura T., Agematsu K., Yachie A. Clonal expansion of Epstein-Barr virus (EBV)-infected gamma delta T cells in patients with chronic active EBV disease and hydroa vacciniforme-like eruptions. Int. J. Hematol. 2012;96:443–449. doi: 10.1007/s12185-012-1156-0.
    1. Magana M., Massone C., Magana P., Cerroni L. Clinicopathologic features of hydroa vacciniforme-like lymphoma: A series of 9 patients. Am. J. Dermatopathol. 2016;38:20–25. doi: 10.1097/DAD.0000000000000385.
    1. Iwata S., Wada K., Tobita S., Gotoh K., Ito Y., Demachi-Okamura A., Shimizu N., Nishiyama Y., Kimura H. Quantitative analysis of Epstein-Barr virus (EBV)-related gene expression in patients with chronic active EBV infection. J. Gen. Virol. 2010;91:42–50. doi: 10.1099/vir.0.013482-0.
    1. Ishihara S., Okada S., Wakiguchi H., Kurashige T., Hirai K., KawaHa K. Clonal lymphoproliferation following chronic active Epstein-Barr virus infection and hypersensitivity to mosquito bites. Am. J. Hematol. 1997;54:276–281. doi: 10.1002/(SICI)1096-8652(199704)54:4<276::AID-AJH3>;2-S.
    1. Ishihara S., Ohshima K., Tokura Y., Yabuta R., Imaishi H., Wakiguchi H., Kurashige T., Kishimoto H., Katayama I., Okada S., et al. Hypersensitivity to mosquito bites conceals clonal lymphoproliferation of Epstein-Barr viral DNA-positive natural killer cells. Jpn. J. Cancer Res. 1997;88:82–87. doi: 10.1111/j.1349-7006.1997.tb00305.x.
    1. Tokura Y., Tamura Y., Takigawa M., Koide M., Satoh T., Sakamoto T., Horiguchi D., Yamada M. Severe hypersensitivity to mosquito bites associated with natural-killer-cell lymphocytosis. Arch. Dermatol. 1990;126:362–368. doi: 10.1001/archderm.1990.01670270094016.
    1. Asada H. Hypersensitivity to mosquito bites: A unique pathogenic mechanism linking Epstein-Barr virus infection, allergy and oncogenesis. J. Dermatol. Sci. 2007;45:153–160. doi: 10.1016/j.jdermsci.2006.11.002.
    1. Asada H., Saito-Katsuragi M., Niizeki H., Yoshioka A., Suguri S., Isonokami M., Aoki T., Ishihara S., Tokura Y., Iwatsuki K., et al. Mosquito salivary gland extracts induce EBV-infected NK cell oncogenesis via CD4+ T cells in patients with hypersensitivity to mosquito bites. J. Investig. Dermatol. 2005;125:956–961. doi: 10.1111/j.0022-202X.2005.23915.x.
    1. Tokura Y., Matsuoka H., Koga C., Asada H., Seo N., Ishihara S., Adachi A., Ibe M. Enhanced T-cell response to mosquito extracts by NK cells in hypersensitivity to mosquito bites associated with EBV infection and NK cell lymphocytosis. Cancer Sci. 2005;96:519–526. doi: 10.1111/j.1349-7006.2005.00076.x.
    1. Asada H., Miyagawa S., Sumikawa Y., Yamaguchi Y., Itami S., Suguri S., Harada M., Tokura Y., Ishihara S., Ohshima S., et al. CD4(+) T-lymphocyte-induced Epstein-Barr virus reactivation in a patient with severe hypersensitivity to mosquito bites and Epstein-Barr virus-infected NK cell lymphocytosis. Arch. Dermatol. 2003;139:1601–1607. doi: 10.1001/archderm.139.12.1601.
    1. Quintanilla-Martinez L., Kumar S., Fend F., Reyes E., Teruya-Feldstein J., Kingma D.W., Sorbara L., Raffeld M., Straus S.E., Jaffe E.S. Fulminant EBV+ T-cell lymphoproliferative disorder following acute/chronic EBV infection: A distinct clinicopathologic syndrome. Blood. 2000;96:443–451.
    1. Henter J.I., Horne A., Arico M., Egeler R.M., Filipovich A.H., Imashuku S., Ladisch S., McClain K., Webb D., Winiarski J., et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer. 2007;48:124–131. doi: 10.1002/pbc.21039.
    1. Jordan M.B., Allen C.E., Weitzman S., Filipovich A.H., McClain K.L. How I treat hemophagocytic lymphohistiocytosis. Blood. 2011;118:4041–4052. doi: 10.1182/blood-2011-03-278127.
    1. Smith M.C., Cohen D.N., Greig B., Yenamandra S., Vnencak-Jones C., Thompson M.A., Kim A.S. The ambiguous boundary between EBV-related hemophagocytic lymphohistiocytosis and systemic EBV-driven T cell lymphoproliferative disorder. Int. J. Clin. Exp. Pathol. 2014;7:5738–5749.
    1. Jones J.F., Shurin S., Abramowsky C., Tubbs R.R., Sciotto C.G., Wahl R., Sands J., Gottman D., Katz B.Z., Sklar J. T-cell lymphomas containing Epstein-Barr viral-DNA in patients with chronic Epstein-Barr virus-infections. N. Engl. J. Med. 1988;318:733–741. doi: 10.1056/NEJM198803243181203.
    1. Kanegane H., Bhatia K., Gutierrez M., Kaneda H., Wada T., Yachie A., Seki H., Arai T., Kagimoto S., Okazaki M., et al. Syndrome of peripheral blood T-cell infection with Epstein-Barr virus (EBV) followed by EBV-positive T-cell lymphoma. Blood. 1998;91:2085–2091.
    1. Kikuta H., Sakiyama Y., Matsumoto S., Ohishi T., Nakano T., Nagashima T., Oka T., Hironaka T., Hirai K. Fatal Epstein-Barr virus-associated hemophagocytic syndrome. Blood. 1993;82:3259–3264.
    1. Chen R.L., Su I.J., Lin K.H., Lee S.H., Lin D.T., Chuu W.M., Lin K.S., Huang L.M., Lee C.Y. Fulminant childhood hemophagocytic syndrome mimicking histiocytic medullary reticulosis—An atypical form of Epstein-Barr-virus infection. Am. J. Clin. Pathol. 1991;96:171–176. doi: 10.1093/ajcp/96.2.171.
    1. Imamura N., Kusunoki Y., Kawaha K., Yumura K., Hara J., Oda K., Abe K., Dohy H., Inada T., Kajihara H., et al. Aggressive natural-killer-cell leukemia lymphoma—Report of 4 cases and review of the literature—Possible existence of a new clinical entity originating from the 3rd lineage of lymphoid-cells. Br. J. Haematol. 1990;75:49–59. doi: 10.1111/j.1365-2141.1990.tb02615.x.
    1. Quintanilla-Martinez L., Jaffe E.S. Aggressive NK cell lymphomas: Insights into the spectrum of NK cell derived malignancies. Histopathology. 2000;37:372–374. doi: 10.1046/j.1365-2559.2000.01029.x.
    1. Chan J.K.C., Jaffe E.S., Ko Y.-H. Aggressive NK-cell leukemia. In: Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J., Arber D.A., Hasserjian R.P., Le Beau M.M., et al., editors. Who Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC; Lyon, France: 2017. pp. 353–354.
    1. Chan J.K.C., Sin V.C., Wong K.F., Ng C.S., Tsang W.Y.W., Chan C.H., Cheung M.M.C., Lau W.H. Nonnasal lymphoma expressing the natural killer cell marker CD56: A clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood. 1997;89:4501–4513.
    1. Li C.R., Tan Y., Wang J., Zhu L., Huang L., Wang N., Xu D.M., Cao Y., Li J.Y., Zhou J.F. Abnormal immunophenotype provides a key diagnostic marker: A report of 29 cases of de novo aggressive natural killer cell leukemia. Transl. Res. 2014;163:565–577. doi: 10.1016/j.trsl.2014.01.010.
    1. Mori N., Yamashita Y., Tsuzuki T., Nakayama A., Nakazawa M., Hasegawa Y., Kojima H., Nagasawa T. Lymphomatous features of aggressive NK cell leukaemia/lymphoma with massive necrosis, haemophagocytosis and EB virus infection. Histopathology. 2000;37:363–371. doi: 10.1046/j.1365-2559.2000.00936.x.
    1. Song S.Y., Kim W.S., Ko Y.H., Kim K., Lee M.H., Park K. Aggressive natural killer cell leukemia: Clinical features and treatment outcome. Haematologica. 2002;87:1343–1345.
    1. Suzuki R., Suzumiya J., Nakamura S., Aoki S., Notoya A., Ozaki S., Gondo H., Hino N., Mori H., Sugimori H., et al. Aggressive natural killer-cell leukemia revisited: Large granular lymphocyte leukemia of cytotoxic NK cells. Leukemia. 2004;18:763–770. doi: 10.1038/sj.leu.2403262.
    1. Kato K., Ohshima K., Ishihara S., Anzai K., Suzumiya J., Kikuchi M. Elevated serum soluble fas ligand in natural killer cell proliferative disorders. Br. J. Haematol. 1998;103:1164–1166. doi: 10.1046/j.1365-2141.1998.01095.x.
    1. Makishima H., Ito T., Momose K., Nakazawa H., Shimodaira S., Kamijo Y., Nakazawa Y., Ichikawa N., Ueno M., Kobayashi H., et al. Chemokine system and tissue infiltration in aggressive NK-cell leukemia. Leuk. Res. 2007;31:1237–1245. doi: 10.1016/j.leukres.2006.10.020.
    1. Gao J.H., Behdad A., Ji P., Wolniak K.L., Frankfurt O., Chen Y.H. EBV-negative aggressive NK-cell leukemia/lymphoma: A clinical and pathological study from a single institution. Mod. Pathol. 2017;30:1100–1115. doi: 10.1038/modpathol.2017.37.
    1. Nicolae A., Ganapathi K.A., Pham T.H.T., Xi L.Q., Torres-Cabala C.A., Nanaji N.M., Zha H.D., Fan Z., Irwin S., Pittaluga S., et al. EBV-negative aggressive NK-cell leukemia/lymphoma clinical, pathologic, and genetic features. Am. J. Surg. Pathol. 2017;41:67–74. doi: 10.1097/PAS.0000000000000735.
    1. Park S., Ko Y.H. Epstein-Barr virus-associated T/natural killer-cell lymphoproliferative disorders. J. Dermatol. 2014;41:29–39. doi: 10.1111/1346-8138.12322.
    1. Ryder J., Wang X., Bao L., Gross S.A., Hua F., Irons R.D. Aggressive natural killer cell leukemia: Report of a chinese series and review of the literature. Int. J. Hematol. 2007;85:18–25. doi: 10.1532/IJH97.A10612.
    1. Nakashima Y., Tagawa H., Suzuki R., Karnan S., Karube K., Ohshima K., Muta K., Nawata H., Morishima Y., Nakamura S., et al. Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: Different genomic alteration patterns of aggressive NK-cell leukemia and extranodal NK/T-cell lymphoma, nasal type. Genes Chromosome Cancer. 2005;44:247–255. doi: 10.1002/gcc.20245.
    1. Tanaka M., Suda T., Haze K., Nakamura N., Sato K., Kimura F., Motoyoshi K., Mizuki M., Tagawa S., Ohga S., et al. Fas ligand in human serum. Nat. Med. 1996;2:317–322. doi: 10.1038/nm0396-317.
    1. Gao L.M., Zhao S., Liu W.P., Zhang W.Y., Li G.D., Kucuk C., Hu X.Z., Chan W.C., Tang Y., Ding W.S., et al. Clinicopathologic characterization of aggressive natural killer cell leukemia involving different tissue sites. Am. J. Surg. Pathol. 2016;40:836–846. doi: 10.1097/PAS.0000000000000634.
    1. Sun J.C., Lanier L.L. NK cell development, homeostasis and function: Parallels with CD8(+) T cells. Nat. Rev. Immunol. 2011;11:645–657. doi: 10.1038/nri3044.
    1. Chan J.K.C., Quintanilla-Martinez L., Ferry J.A. Extranodal NK/T-cell lymphoma, nasal type. In: Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J., Arber D.A., Hasserjian R.P., Le Beau M.M., et al., editors. Who Classification of Tumours of Haematopoietic and Lymphoid Tissue. IARC; Lyon, France: 2017. pp. 368–371.
    1. Quintanilla-Martinez L., Franklin J.L., Guerrero I., Krenacs L., Naresh K.N., Rama-Rao C., Bhatia K., Raffeld M., Magrath I.T. Histological and immunophenotypic profile of nasal NK T cell lymphomas from Peru: High prevalence of p53 overexpression. Hum. Pathol. 1999;30:849–855. doi: 10.1016/S0046-8177(99)90147-8.
    1. Au W.Y., Weisenburger D.D., Intragumtornchai T., Nakamura S., Kim W.S., Sng I., Vose J., Armitage J.O., Liang R., International Peripheral T-Cell Lymphoma Project Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: A study of 136 cases from the international peripheral T-cell lymphoma project. Blood. 2009;113:3931–3937. doi: 10.1182/blood-2008-10-185256.
    1. Asano N., Kato S., Nakamura S. Epstein–Barr virus-associated natural killer/T-cell lymphomas. Best Pract. Res. Clin. Haematol. 2013;26:15–21. doi: 10.1016/j.beha.2013.04.002.
    1. Wong K.F., Chan J.K.C., Cheung M.M.C., So J.C.C. Bone marrow involvement by nasal NK cell lymphoma at diagnosis is uncommon. Am. J. Clin. Pathol. 2001;115:266–270. doi: 10.1309/E5PR-6A9R-Q02N-8QVW.
    1. Kwong Y.L., Chan A.C.L., Liang R., Chiang A.K.S., Chim C.S., Chan T.K., Todd D., Ho F.C.S. CD56(+) NK lymphomas: Clinicopathological features and prognosis. Br. J. Haematol. 1997;97:821–829. doi: 10.1046/j.1365-2141.1997.1462962.x.
    1. Kern W.F., Spier C.M., Hanneman E.H., Miller T.P., Matzner M., Grogan T.M. Neural cell-adhesion molecule-positive peripheral T-cell lymphoma—A rare variant with a propensity for unusual sites of involvement. Blood. 1992;79:2432–2437.
    1. Wong K.F., Chan J.K.C., Ng C.S., Lee K.C., Tsang W.Y.W., Cheung M.M.C. CD56 (NKH1)-positive hematolymphoid malignancies—An aggressive neoplasm featuring frequent cutaneous mucosal involvement, cytoplasmic azurophilic granules, and angiocentricity. Hum. Pathol. 1992;23:798–804. doi: 10.1016/0046-8177(92)90350-C.
    1. Hasserjian R.P., Harris N.L. NK-cell lymphomas and leukemias—A spectrum of tumors with variable manifestations and immunophenotype. Am. J. Clin. Pathol. 2007;127:860–868. doi: 10.1309/2F39NX1AL3L54WU8.
    1. Jaffe E.S., Chan J.K.C., Su I.J., Frizzera G., Mori S., Feller A.C., Ho F.C.S. Report of the workshop on nasal and related extranodal angiocentric T natural killer cell lymphomas—Definitions, differential diagnosis, and epidemiology. Am. J. Surg. Pathol. 1996;20:103–111. doi: 10.1097/00000478-199601000-00012.
    1. Jhuang J.Y., Chang S.T., Weng S.F., Pan S.T., Chu P.Y., Hsieh P.P., Wei C.H., Chou S.C., Koo C.L., Chen C.J., et al. Extranodal natural killer/T-cell lymphoma, nasal type in taiwan: A relatively higher frequency of T-cell lineage and poor survival for extranasal tumors. Hum. Pathol. 2015;46:313–321. doi: 10.1016/j.humpath.2014.11.008.
    1. Kim W.Y., Nam S.J., Kim S., Kim T.M., Heo D.S., Kim C.W., Jeon Y.K. Prognostic implications of CD30 expression in extranodal natural killer/T-cell lymphoma according to treatment modalities. Leuk. Lymphoma. 2015;56:1778–1786. doi: 10.3109/10428194.2014.974048.
    1. Jeon Y.K., Kim H., Park S.O., Choi H.Y., Kim Y.A., Park S.S., Kim J.E., Kim Y.N., Kim C.W. Resistance to FAS-mediated apoptosis is restored by cycloheximide through the downregulation of cellular FLIPl in NK/T-cell lymphoma. Lab. Investig. 2005;85:874–884. doi: 10.1038/labinvest.3700291.
    1. Ohshima K., Suzumiya J., Shimazaki K., Kato A., Tanaka T., Kanda M., Kikuchi M. Nasal T/NK cell lymphomas commonly express perforin and fas ligand: Important mediators of tissue damage. Histopathology. 1997;31:444–450. doi: 10.1046/j.1365-2559.1997.2880887.x.
    1. Chiang A.K.S., Wong K.Y., Liang A.C.T., Srivastava G. Comparative analysis of Epstein-Barr virus gene polymorphisms in nasal T/NK-cell lymphomas and normal nasal tissues: Implications on virus strain selection in malignancy. Int. J. Cancer. 1999;80:356–364. doi: 10.1002/(SICI)1097-0215(19990129)80:3<356::AID-IJC4>;2-D.
    1. Dirnhofer S., Angeles-Angeles A., Ortiz-Hidalgo C., Reyes E., Gredler E., Krugmann J., Fend F., Quintanilla-Martinez L. High prevalence of a 30-base pair deletion in the Epstein-Barr virus (EBV) latent membrane protein 1 gene and of strain type B EBV in Mexican classical Hodgkin’s disease and reactive lymphoid tissue. Hum. Pathol. 1999;30:781–787. doi: 10.1016/S0046-8177(99)90138-7.
    1. Kwong Y.L., Lam C.C.K., Chan T.M. Post-transplantation lymphoproliferative disease of natural killer cell lineage: A clinicopathological and molecular analysis. Br. J. Haematol. 2000;110:197–202. doi: 10.1046/j.1365-2141.2000.02138.x.
    1. Hong M., Lee T., Kang S.Y., Kim S.J., Kim W., Ko Y.H. Nasal-type NK/T-cell lymphomas are more frequently T rather than NK lineage based on T-cell receptor gene, RNA, and protein studies: Lineage does not predict clinical behavior. Mod. Pathol. 2016;29:430–443. doi: 10.1038/modpathol.2016.47.
    1. Iqbal J., Weisenburger D.D., Chowdhury A., Tsai M.Y., Srivastava G., Greiner T.C., Kucuk C., Deffenbacher K., Vose J., Smith L., et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic gamma delta T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia. 2011;25:348–358. doi: 10.1038/leu.2010.255.
    1. Siu L.L.P., Chan V., Chan J.K.C., Wong K.F., Liang R., Kwong Y.L. Consistent patterns of allelic loss in natural killer cell lymphoma. Am. J. Pathol. 2000;157:1803–1809. doi: 10.1016/S0002-9440(10)64818-3.
    1. Jiang L., Gu Z.H., Yan Z.X., Zhao X., Xie Y.Y., Zhang Z.G., Pan C.M., Hu Y., Cai C.P., Dong Y., et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat. Genet. 2015;47:1061–1066. doi: 10.1038/ng.3358.
    1. Lee S., Park H.Y., Kang S.Y., Kim S.J., Hwang J., Lee S., Kwak S.H., Park K.S., Yoo H.Y., Kim W.S., et al. Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget. 2015;6:17764–17776. doi: 10.18632/oncotarget.3776.
    1. Dobashi A., Tsuyama N., Asaka R., Togashi Y., Ueda K., Sakata S., Baba S., Sakamoto K., Hatake K., Takeuchi K. Frequent BCOR aberrations in extranodal NK/T-cell lymphoma, nasal type. Genes Chromosome Cancer. 2016;55:460–471. doi: 10.1002/gcc.22348.
    1. Kucuk C., Jiang B., Hu X.Z., Zhang W.Y., Chan J.K.C., Xiao W.M., Lack N., Alkan C., Williams J.C., Avery K.N., et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gamma delta-T or NK cells. Nat. Commun. 2015;6:6025. doi: 10.1038/ncomms7025.
    1. Quintanilla-Martinez L., Kremer M., Keller G., Nathrath M., Gamboa-Dominguez A., Meneses A., Luna-Contreras L., Cabras A., Hoefler H., Mohar A., et al. P53 mutations in nasal natural killer/T-cell lymphoma from Mexico—Association with large cell morphology and advanced disease. Am. J. Pathol. 2001;159:2095–2105. doi: 10.1016/S0002-9440(10)63061-1.
    1. Attygalle A.D., Cabecadas J., Gaulard P., Jaffe E.S., de Jong D., Ko Y.H., Said J., Klapper W. Peripheral T-cell and NK-cell lymphomas and their mimics; taking a step forward—Report on the lymphoma workshop of the XVIth meeting of the European Association for Haematopathology and the Society for Hematopathology. Histopathology. 2014;64:171–199. doi: 10.1111/his.12251.
    1. Jeon Y.K., Kim J.H., Sung J.Y., Han J.H., Ko Y.H., Pathologists K.S. Epstein-Barr virus-positive nodal T/NK-cell lymphoma: An analysis of 15 cases with distinct clinicopathological features. Hum. Pathol. 2015;46:981–990. doi: 10.1016/j.humpath.2015.03.002.
    1. Kato S., Asano N., Miyata-Takata T., Takata K., Elsayed A.A., Satou A., Takahashi E., Kinoshita T., Nakamura S. T-cell receptor (TCR) phenotype of nodal Epstein-Barr virus (EBV)-positive cytotoxic T-cell lymphoma (CTL) a clinicopathologic study of 39 cases. Am. J. Surg. Pathol. 2015;39:462–471. doi: 10.1097/PAS.0000000000000323.
    1. NG S.B., Chung T.H., Nakamura S., Takahashi E., Ko Y.-H., Khoury J.D., Yin C.C., Soong R., Jeyasekharan A.D., Hoppe M.M., et al. EBV-associated primary nodal T/NK-cell lymphoma shows distinct molecular signature and copy number changes. Haematologica. 2017 doi: 10.3324/haematol.2017.180430.

Source: PubMed

3
Subscribe