Eating Pattern and Nutritional Risks among People with Multiple Sclerosis Following a Modified Paleolithic Diet

Tyler J Titcomb, Babita Bisht, David D Moore 3rd, Yashpal S Chhonker, Daryl J Murry, Linda G Snetselaar, Terry L Wahls, Tyler J Titcomb, Babita Bisht, David D Moore 3rd, Yashpal S Chhonker, Daryl J Murry, Linda G Snetselaar, Terry L Wahls

Abstract

Preliminary studies suggest that a modified Paleolithic diet may benefit symptoms of fatigue in progressive multiple sclerosis (MS). However, this diet restricts the consumption of eggs, dairy, and gluten-containing grains, which may increase the risk of micronutrient deficiencies. Therefore, we evaluated the nutritional safety of this diet among people with progressive MS. Three nonconsecutive 24-h dietary recalls were collected from (n = 19) progressive MS participants in the final months of a diet intervention study and analyzed using Nutrition Data System for Research (NDSR) software. Food group intake was calculated, and intake of micronutrients was evaluated and compared to individual recommendations using Nutrient Adequacy Ratios (NARs). Blood was drawn at baseline and the end of the study to evaluate biomarker changes. Mean intake of fruits and vegetables exceeded nine servings/day and most participants excluded food groups. The intake of all micronutrients from food were above 100% NAR except for vitamin D (29.6 ± 34.6%), choline (73.2 ± 27.2%), and calcium (60.3 ± 22.8%), and one participant (1/19) exceeded the Tolerable Upper Limit (UL) for zinc, one (1/19) for vitamin A, and 37% (7/19) exceeded the chronic disease risk reduction (CDRR) for sodium. When intake from supplements was included in the analysis, several individuals exceeded ULs for magnesium (5/19), zinc (2/19), sodium (7/19), and vitamins A (2/19), D (9/19), C (1/19), B6 (3/19), and niacin (10/19). Serum values of vitamins D, B12, K1, K2, and folate significantly increased compared to respective baseline values, while homocysteine and magnesium values were significantly lower at 12 months. Calcium and vitamin A serum levels did not change. This modified Paleolithic diet is associated with minimal nutritional risks. However, excessive intake from supplements may be of concern.

Keywords: fruits; modified Paleolithic diet; multiple sclerosis; nutrient adequacy ratio; recommended dietary allowances; vegetables.

Conflict of interest statement

Terry Wahls has equity interest in the following companies: Terry Wahls LLC; TZ Press LLC; The Wahls Institute, PLC; FBB Biomed Inc; and the website http://www.terrywahls.com. She also owns the copyright to the books Minding My Mitochondria (2nd Edition) and The Wahls Protocol, The Wahls Protocol Cooking for Life, and the trademarks The Wahls Protocol® and Wahls™ diet, Wahls Paleo™ diet, and Wahls Paleo Plus™ diets. She has current grant funding from the National Multiple Sclerosis Society for the Dietary Approaches to Treating Multiple Sclerosis Related Fatigue Study. She has financial relationships with BioCeuticals, MCG Health LLC, Genova Diagnostics, and the Institute for Functional Medicine. She receives royalty payments from Penguin Random House. Wahls has conflict of interest management plans in place with the University of Iowa and the Iowa City Veteran’s Affairs Medical Center. All other authors report no conflicts of interest in this work.

References

    1. Thompson A.J., Baranzini S.E., Geurts J., Hemmer B., Ciccarelli O. Multiple sclerosis. Lancet. 2018;391:1622–1636. doi: 10.1016/S0140-6736(18)30481-1.
    1. Wallin M.T., Culpepper W.J., Campbell J.D., Nelson L.M., Langer-Gould A., Marrie R.A., Cutter G.R., Kaye W.E., Wagner L., Tremlett H., et al. The prevalence of ms in the united states: A population-based estimate using health claims data. Neurology. 2019;92:e1029–e1040. doi: 10.1212/WNL.0000000000007035.
    1. Compston A., Coles A. Multiple sclerosis. Lancet. 2008;372:1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Lauer K. Environmental risk factors in multiple sclerosis. Expert Rev. Neurother. 2010;10:421–440. doi: 10.1586/ern.10.7.
    1. Hartung D.M., Bourdette D.N., Ahmed S.M., Whitham R.H. The cost of multiple sclerosis drugs in the us and the pharmaceutical industry: Too big to fail? Neurology. 2015;84:2185–2192. doi: 10.1212/WNL.0000000000001608.
    1. Rafiee Zadeh A., Ghadimi K., Ataei A., Askari M., Sheikhinia N., Tavoosi N., Falahatian M. Mechanism and adverse effects of multiple sclerosis drugs: A review article. Part 2. Int. J. Physiol. Pathophysiol. Pharmacol. 2019;11:105–114.
    1. Rafiee Zadeh A., Askari M., Azadani N.N., Ataei A., Ghadimi K., Tavoosi N., Falahatian M. Mechanism and adverse effects of multiple sclerosis drugs: A review article. Part 1. Int. J. Physiol. Pathophysiol. Pharmacol. 2019;11:95–104.
    1. Yadav V., Shinto L., Bourdette D. Complementary and alternative medicine for the treatment of multiple sclerosis. Expert Rev. Clin. Immunol. 2010;6:381–395. doi: 10.1586/eci.10.12.
    1. Wahls T., Adamson E. The Wahls Protocol: How I Beat Progressive ms Using Paleo Principles and Functional Medicine. Avery/Penguin; New York, NY, USA: 2014.
    1. Bisht B., Darling W.G., Shivapour E.T., Lutgendorf S.K., Snetselaar L.G., Chenard C.A., Wahls T.L. Multimodal intervention improves fatigue and quality of life in subjects with progressive multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2015;5:19–35.
    1. Bisht B., Darling W.G., White E.C., White K.A., Shivapour E.T., Zimmerman M.B., Wahls T.L. Effects of a multimodal intervention on gait and balance of subjects with progressive multiple sclerosis: A prospective longitudinal pilot study. Degener. Neurol. Neuromuscul. Dis. 2017;7:79–93. doi: 10.2147/DNND.S128872.
    1. Fellows Maxwell K., Wahls T., Browne R.W., Rubenstein L., Bisht B., Chenard C.A., Snetselaar L., Weinstock-Guttman B., Ramanathan M. Lipid profile is associated with decreased fatigue in individuals with progressive multiple sclerosis following a diet-based intervention: Results from a pilot study. PLoS ONE. 2019;14:e0218075. doi: 10.1371/journal.pone.0218075.
    1. Lee J.E., Bisht B., Hall M.J., Rubenstein L.M., Louison R., Klein D.T., Wahls T.L. A multimodal, nonpharmacologic intervention improves mood and cognitive function in people with multiple sclerosis. J. Am. Coll. Nutr. 2017;36:150–168. doi: 10.1080/07315724.2016.1255160.
    1. Irish A.K., Erickson C.M., Wahls T.L., Snetselaar L.G., Darling W.G. Randomized control trial evaluation of a modified paleolithic dietary intervention in the treatment of relapsing-remitting multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2017;7:1–18. doi: 10.2147/DNND.S116949.
    1. Lee J.E., Titcomb T.J., Bisht B., Rubenstein L.M., Louison R., Wahls T.L. A modified mct-based ketogenic diet increases plasma β-hydroxybutyrate but has less effect on fatigue and quality of life in people with multiple sclerosis compared to a modified paleolithic diet: A waitlist-controlled, randomized pilot study [published online ahead of print, 26 Mart 2020] J. Am. Coll. Nutr. 2020:1–13. doi: 10.1080/07315724.2020.1734988.
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture . 2015–2020 Dietary Guidelines for Americans. 8th ed. USDA; Washington, DC, USA: 2015.
    1. Masullo L., Papas M.A., Cotugna N., Baker S., Mahoney L., Trabulsi J. Complementary and alternative medicine use and nutrient intake among individuals with multiple sclerosis in the united states. J. Community Health. 2015;40:153–160. doi: 10.1007/s10900-014-9913-z.
    1. Chenard C.A., Rubenstein L.M., Snetselaar L.G., Wahls T.L. Nutrient composition comparison between a modified paleolithic diet for multiple sclerosis and the recommended healthy u.S.-style eating pattern. Nutrients. 2019;11:537. doi: 10.3390/nu11030537.
    1. Bisht B., Darling W.G., Grossmann R.E., Shivapour E.T., Lutgendorf S.K., Snetselaar L.G., Hall M.J., Zimmerman M.B., Wahls T.L. A multimodal intervention for patients with secondary progressive multiple sclerosis: Feasibility and effect on fatigue. J. Altern. Complement. Med. 2014;20:347–355. doi: 10.1089/acm.2013.0188.
    1. United States Department of Agriculture Fooddata Central. [(accessed on 30 March 2020)]; Available online: .
    1. Zhang Y., Chhonker Y.S., Bala V., Hagg A., Snetselaar L.G., Wahls T.L., Murry D.J. Reversed phase uplc/apci-ms determination of vitamin k1 and menaquinone-4 in human plasma: Application to a clinical study. J. Pharm. Biomed. Anal. 2020;183:113147. doi: 10.1016/j.jpba.2020.113147.
    1. Gannon B.M., Valentine A.R., Davis C.R., Howe J.A., Tanumihardjo S.A. Duration of retinol isotope dilution studies with compartmental modeling affects model complexity, kinetic parameters, and calculated vitamin a stores in us women. J. Nutr. 2018;148:1387–1396. doi: 10.1093/jn/nxy095.
    1. Shim J.S., Oh K., Kim H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health. 2014;36:e2014009. doi: 10.4178/epih/e2014009.
    1. Sintzel M.B., Rametta M., Reder A.T. Vitamin d and multiple sclerosis: A comprehensive review. Neurol. Ther. 2018;7:59–85. doi: 10.1007/s40120-017-0086-4.
    1. Evans E., Piccio L., Cross A.H. Use of vitamins and dietary supplements by patients with multiple sclerosis: A review. JAMA Neurol. 2018;75:1013–1021. doi: 10.1001/jamaneurol.2018.0611.
    1. Zikan V. Bone health in patients with multiple sclerosis. J. Osteoporos. 2011;2011:596294. doi: 10.4061/2011/596294.
    1. Kelley G. Aerobic exercise and lumbar spine bone mineral density in postmenopausal women: A meta-analysis. J. Am. Geriatr. Soc. 1998;46:143–152. doi: 10.1111/j.1532-5415.1998.tb02530.x.
    1. Reddy P., Edwards L.R. Magnesium supplementation in vitamin d deficiency. Am. J. Ther. 2019;26:e124–e132. doi: 10.1097/MJT.0000000000000538.
    1. Uwitonze A.M., Razzaque M.S. Role of magnesium in vitamin d activation and function. J. Am. Osteopath Assoc. 2018;118:181–189. doi: 10.7556/jaoa.2018.037.
    1. Loken-Amsrud K.I., Myhr K.M., Bakke S.J., Beiske A.G., Bjerve K.S., Bjornara B.T., Hovdal H., Lilleas F., Midgard R., Pedersen T., et al. Alpha-tocopherol and mri outcomes in multiple sclerosis--association and prediction. PLoS ONE. 2013;8:e54417. doi: 10.1371/journal.pone.0054417.
    1. Goudarzvand M., Javan M., Mirnajafi-Zadeh J., Mozafari S., Tiraihi T. Vitamins e and d3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cell. Mol. Neurobiol. 2010;30:289–299. doi: 10.1007/s10571-009-9451-x.
    1. Spanevello R., Mazzanti C.M., Schmatz R., Bagatini M., Stefanello N., Correa M., Kaizer R., Maldonado P., Mazzanti A., Graca D.L., et al. Effect of vitamin e on ectonucleotidase activities in synaptosomes and platelets and parameters of oxidative stress in rats experimentally demyelinated. Brain Res. Bull. 2009;80:45–51. doi: 10.1016/j.brainresbull.2009.05.015.
    1. Bitarafan S., Saboor-Yaraghi A., Sahraian M.A., Soltani D., Nafissi S., Togha M., Beladi Moghadam N., Roostaei T., Mohammadzadeh Honarvar N., Harirchian M.H. Effect of vitamin a supplementation on fatigue and depression in multiple sclerosis patients: A double-blind placebo-controlled clinical trial. Iran. J. Allergy Asthma Immunol. 2016;15:13–19.
    1. Løken-Amsrud K.I., Myhr K.M., Bakke S.J., Beiske A.G., Bjerve K.S., Bjornara B.T., Hovdal H., Lilleas F., Midgard R., Pedersen T., et al. Retinol levels are associated with magnetic resonance imaging outcomes in multiple sclerosis. Mult. Scler. 2013;19:451–457. doi: 10.1177/1352458512457843.
    1. Rosjo E., Myhr K.M., Loken-Amsrud K.I., Bakke S.J., Beiske A.G., Bjerve K.S., Hovdal H., Lilleas F., Midgard R., Pedersen T., et al. Increasing serum levels of vitamin a, d and e are associated with alterations of different inflammation markers in patients with multiple sclerosis. J. Neuroimmunol. 2014;271:60–65. doi: 10.1016/j.jneuroim.2014.03.014.
    1. Yokote H., Kamata T., Toru S., Sanjo N., Yokota T. Serum retinol levels are associated with brain volume loss in patients with multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2017;3:2055217317729688. doi: 10.1177/2055217317729688.
    1. Lasemi R., Kundi M., Moghadam N.B., Moshammer H., Hainfellner J.A. Vitamin k2 in multiple sclerosis patients. Wien. Klin. Wochenschr. 2018;130:307–313. doi: 10.1007/s00508-018-1328-x.
    1. Ramsaransing G.S., Fokkema M.R., Teelken A., Arutjunyan A.V., Koch M., De Keyser J. Plasma homocysteine levels in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2006;77:189–192. doi: 10.1136/jnnp.2005.072199.
    1. Teunissen C.E., Killestein J., Kragt J.J., Polman C.H., Dijkstra C.D., Blom H.J. Serum homocysteine levels in relation to clinical progression in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2008;79:1349–1353. doi: 10.1136/jnnp.2008.151555.
    1. Refsum H., Smith A.D., Ueland P.M., Nexo E., Clarke R., McPartlin J., Johnston C., Engbaek F., Schneede J., McPartlin C., et al. Facts and recommendations about total homocysteine determinations: An expert opinion. Clin. Chem. 2004;50:3–32. doi: 10.1373/clinchem.2003.021634.
    1. Kim S., Lim I.K., Park G.H., Paik W.K. Biological methylation of myelin basic protein: Enzymology and biological significance. Int. J. Biochem. Cell. Biol. 1997;29:743–751. doi: 10.1016/S1357-2725(97)00009-5.
    1. Dardiotis E., Arseniou S., Sokratous M., Tsouris Z., Siokas V., Mentis A.A., Michalopoulou A., Andravizou A., Dastamani M., Paterakis K., et al. Vitamin b12, folate, and homocysteine levels and multiple sclerosis: A meta-analysis. Mult. Scler. Relat. Disord. 2017;17:190–197. doi: 10.1016/j.msard.2017.08.004.
    1. Skripuletz T., Linker R.A., Stangel M. The choline pathway as a strategy to promote central nervous system (cns) remyelination. Neural Regen. Res. 2015;10:1369–1370.
    1. Skripuletz T., Manzel A., Gropengiesser K., Schafer N., Gudi V., Singh V., Salinas Tejedor L., Jorg S., Hammer A., Voss E., et al. Pivotal role of choline metabolites in remyelination. Pt 2Brain. 2015;138:398–413. doi: 10.1093/brain/awu358.
    1. Wallace T.C., Fulgoni V.L., 3rd Assessment of total choline intakes in the united states. J. Am. Coll. Nutr. 2016;35:108–112. doi: 10.1080/07315724.2015.1080127.
    1. Siegel L., Putnam T.J., Lynn J.G. Blood pantothenic acid values in multiple sclerosis. Proc. Soc. Exp. Biol. Med. 1941;47:362–364. doi: 10.3181/00379727-47-13140.
    1. Nemazannikova N., Mikkelsen K., Stojanovska L., Blatch G.L., Apostolopoulos V. Is there a link between vitamin b and multiple sclerosis? Med. Chem. 2018;14:170–180. doi: 10.2174/1573406413666170906123857.
    1. Stephenson E., Nathoo N., Mahjoub Y., Dunn J.F., Yong V.W. Iron in multiple sclerosis: Roles in neurodegeneration and repair. Nat. Rev. Neurol. 2014;10:459–468. doi: 10.1038/nrneurol.2014.118.
    1. Bredholt M., Frederiksen J.L. Zinc in multiple sclerosis: A systematic review and meta-analysis. ASN Neuro. 2016;8:1759091416651511. doi: 10.1177/1759091416651511.
    1. Choi B.Y., Jung J.W., Suh S.W. The emerging role of zinc in the pathogenesis of multiple sclerosis. Int. J. Mol. Sci. 2017;18:2070. doi: 10.3390/ijms18102070.
    1. Oria M., Harrison M., Stallings V.A., editors. Dietary Reference Intakes for Sodium and Potassium. National Academies Press; Washington, DC, USA: 2019. National Academies of Sciences Engineering and Medicine.
    1. Fitzgerald K.C., Munger K.L., Hartung H.P., Freedman M.S., Montalban X., Edan G., Wicklein E.M., Radue E.W., Kappos L., Pohl C., et al. Sodium intake and multiple sclerosis activity and progression in benefit. Ann. Neurol. 2017;82:20–29. doi: 10.1002/ana.24965.

Source: PubMed

3
Subscribe