Functional connectivity of neural motor networks is disrupted in children with developmental coordination disorder and attention-deficit/hyperactivity disorder

Kevin R McLeod, Lisa Marie Langevin, Bradley G Goodyear, Deborah Dewey, Kevin R McLeod, Lisa Marie Langevin, Bradley G Goodyear, Deborah Dewey

Abstract

Developmental coordination disorder (DCD) and attention deficit/hyperactivity disorder (ADHD) are prevalent childhood disorders that frequently co-occur. Evidence from neuroimaging research suggests that children with these disorders exhibit disruptions in motor circuitry, which could account for the high rate of co-occurrence. The primary objective of this study was to investigate the functional connections of the motor network in children with DCD and/or ADHD compared to typically developing controls, with the aim of identifying common neurophysiological substrates. Resting-state fMRI was performed on seven children with DCD, 21 with ADHD, 18 with DCD + ADHD and 23 controls. Resting-state connectivity of the primary motor cortex was compared between each group and controls, using age as a co-factor. Relative to controls, children with DCD and/or ADHD exhibited similar reductions in functional connectivity between the primary motor cortex and the bilateral inferior frontal gyri, right supramarginal gyrus, angular gyri, insular cortices, amygdala, putamen, and pallidum. In addition, children with DCD and/or ADHD exhibited different age-related patterns of connectivity, compared to controls. These findings suggest that children with DCD and/or ADHD exhibit disruptions in motor circuitry, which may contribute to problems with motor functioning and attention. Our results support the existence of common neurophysiological substrates underlying both motor and attention problems.

Keywords: ADHD, attention deficit/hyperactivity disorder; Attention-deficit/hyperactivity disorder; DCD, developmental coordination disorder; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders (4th edition); DTI, diffusion tensor imaging; Developmental coordination disorder; FC, functional connectivity; Functional connectivity; GLM general, linear model; ICA, independent component analysis; M1, primary motor cortex; PFC, prefrontal cortex; Resting state fMRI, Motor networks; fMRI, functional magnetic resonance imaging; rs-fMRI, resting-state fMRI.

Figures

Fig. 1
Fig. 1
Regions exhibiting greater (red) and lower (blue) functional connectivity with left M1 in controls compared to children in the ADHD (top), DCD (middle), and DCD + ADHD (bottom) groups. Colors indicate statistical significance, expressed as Z-scores.
Fig. 2
Fig. 2
Regions exhibiting a significant association between age and functional connectivity with the left M1. Colors indicate statistical significance, expressed as Z-scores; red indicates a positive association with age; blue indicates a negative association with age.

References

    1. Able S.L., Johnston J.A., Adler L.A., Swindle R.W. Functional and psychosocial impairment in adults with undiagnosed ADHD. Psychological Medicine. 2007;37:97–107.
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. fourth edition, Text Revision. American Psychiatric Association; Washington, D.C.: 2000.
    1. Biederman J., Mick E., Faraone S.V. Age-dependent decline of symptoms of attention deficit hyperactivity disorder: impact of remission definition and symptom type. American Journal of Psychiatry. 2000;157:816–818. doi: 10.1176/appi.ajp.157.5.816.
    1. Binkofski F., Buccino G., Posse S., Seitz R.J., Rizzolatti G., Freund H. A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. European Journal of Neuroscience. 1999;11:3276–3286. doi: 10.1046/j.1460-9568.1999.00753.x.
    1. Booth J.R., Burman D.D., Meyer J.R., Lei Z., Trommer B.L., Davenport N.D., Li W., Parrish T.B., Gitelman D.R., Mesulam M.M. Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD) Journal of Child Psychology and Psychiatry, and Allied Disciplines. 2005;46:94–111. doi: 10.1111/j.1469-7610.2004.00337.x.
    1. Brieber S., Neufang S., Bruning N., Kamp-Becker I., Remschmidt H., Herpertz-Dahlmann B., Fink G.R., Konrad K. Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, and Allied Disciplines. 2007;48:1251–1258. doi: 10.1111/j.1469-7610.2007.01799.x.
    1. Cantell M.H., Smyth M.M., Ahonen T.P. Two distinct pathways for developmental coordination disorder: persistence and resolution. Human Movement Science. 2003;22:413–431. doi: 10.1016/j.humov.2003.09.002.
    1. Cao Q., Zang Y., Sun L., Sui M., Long X., Zou Q., Wang Y. Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport. 2006;17:1033–1036. doi: 10.1097/01.wnr.0000224769.92454.5d.
    1. Cao X., Cao Q., Long X., Sun L., Sui M., Zhu C., Zuo X., Zang Y., Wang Y. Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder. Brain Research. 2009;1303:195–206. doi: 10.1016/j.brainres.2009.08.029.
    1. Castellanos F.X., Giedd J.N., Marsh W.L., Hamburger S.D., Vaituzis A.C., Dickstein D.P., Sarfatti S.E., Vauss Y.C., Snell J.W., Lange N., Kaysen D., Krain A.L., Ritchie G.F., Rajapakse J.C., Rapoport J.L. Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Archives of General Psychiatry. 1996;53:607–616. doi: 10.1001/archpsyc.1996.01830070053009.
    1. Castellanos F.X., Lee P.P., Sharp W., Jeffries N.O., Greenstein D.K., Clasen L.S., Blumenthal J.D., James R.S., Ebens C.L., Walter J.M., Zijdenbos A., Evans A.C., Giedd J.N., Rapoport J.L. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA: the Journal of the American Medical Association. 2002;288:1740–1748. doi: 10.1001/jama.288.14.1740.
    1. Cauda F., Costa T., Torta D.M., Sacco K., D'Agata F., Duca S., Geminiani G., Fox P.T., Vercelli A. Meta-analytic clustering of the insular cortex: characterizing the meta-analytic connectivity of the insula when involved in active tasks. Neuroimage. 2012;62:343–355. doi: 10.1016/j.neuroimage.2012.04.012.
    1. Chen T.L., Babiloni C., Ferretti A., Perrucci M.G., Romani G.L., Rossini P.M., Tartaro A., Del Gratta C. Human secondary somatosensory cortex is involved in the processing of somatosensory rare stimuli: An fMRI study. Neuroimage. 2008;40:1765–1771. doi: 10.1016/j.neuroimage.2008.01.020.
    1. Christoff K., Gabrieli J. He frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology. 2000;28:168–186.
    1. Cole D.M., Smith S.M., Beckman C.F. Advances and pitfalls in the analysis and interpretation of resting state fMRI data. Frontiers in Systems Neuroscience. 2010;4:8.
    1. Conners C.K., Sitarenios G., Parker J.D., Epstein J.N. The revised Conners' Parent Rating Scale (CPRS-R): factor structure, reliability, and criterion validity. Journal of Abnormal Child Psychology. 1998;26:257–268. doi: 10.1023/A:1022602400621.
    1. Crawford S.G., Dewey D. Co-occurring disorders: a possible key to visual perceptual deficits in children with developmental coordination disorder? Human Movement Science. 2008;27:154–168. doi: 10.1016/j.humov.2007.09.002.
    1. de Zeeuw P., Mandl R.C., Hulshoff Pol H.E., van Engeland H., Durston S. Decreased frontostriatal microstructural organization in attention deficit/hyperactivity disorder. Human Brain Mapping. 2012;33:1941–1951. doi: 10.1002/hbm.21335.
    1. Deco G., Corbetta M. The dynamical balance of the brain at rest. Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry. 2011;17:107–123. doi: 10.1177/1073858409354384.
    1. Dickstein S.G., Bannon K., Castellanos F.X., Milham M.P. The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. Journal of Child Psychology and Psychiatry, and Allied Disciplines. 2006;47:1051–1062. doi: 10.1111/j.1469-7610.2006.01671.x.
    1. du Boisgueheneuc F.1., Levy R., Volle E., Seassau M., Duffau H., Kinkingnehun S., Samson Y., Zhang S., Dubois B. Functions of the left superior frontal gyrus in humans: a lesion study. Brain. 2006;129:3315–3328. Epub 2006 Sep 19.
    1. Duerden E.G., Tannock R., Dockstader C. Altered cortical morphology in sensorimotor processing regions in adolescents and adults with attention-deficit/hyperactivity disorder. Brain Research. 2012;1445:82–91. doi: 10.1016/j.brainres.2012.01.034.
    1. Durston S., Mulder M., Casey B.J., Ziermans T., van Engeland H. Activation in ventral prefrontal cortex is sensitive to genetic vulnerability for attention-deficit hyperactivity disorder. Biological Psychiatry. 2006;60:1062–1070. doi: 10.1016/j.biopsych.2005.12.020.
    1. Durston S., Tottenham N.T., Thomas K.M., Davidson M.C., Eigsti I.M., Yang Y., Ulug A.M., Casey B.J. Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry. 2003;53:871–878. doi: 10.1016/S0006-3223(02)01904-2.
    1. Ellison-Wright I., Ellison-Wright Z., Bullmore E. Structural brain change in attention deficit hyperactivity disorder identified by meta-analysis. BMC Psychiatry. 2008;8:51.
    1. Frodl T., Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatrica Scandinavica. 2012;125:114–126.
    1. Golestani A.M., Goodyear B.G. Regions of interest for resting-state fMRI analysis determined by inter-voxel cross-correlation. Neuroimage. 2011;56:246–251. doi: 10.1016/j.neuroimage.2011.02.038.
    1. Hamilton L.S., Levitt J.G., O'Neill J., Alger J.R., Luders E., Phillips O.R., Caplan R., Toga A.W., McCracken J., Narr K.L. Reduced white matter integrity in attention-deficit hyperactivity disorder. Neuroreport. 2008;19:1705–1708. doi: 10.1097/WNR.0b013e3283174415.
    1. Henderson S.E., Sudgen D.A., Barnett A.L. Movement Assessment Battery for Children. second edition. Psychological Corporation; London, UK: 2007.
    1. Jenkinson M., Bannister P., Brady M., Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–841. doi: 10.1006/nimg.2002.1132.
    1. Kadesjo B., Gillberg C. Attention deficits and clumsiness in Swedish 7-year-old children. Developmental Medicine and Child Neurology. 1998;40:796–804.
    1. Kandel E.R., Schwartz J.H., Jessell T.M. The Principles of Neural Science. fourth edition. McGraw-Hill; New York: 2000.
    1. Kashiwagi M., Iwaki S., Narumi Y., Tamai H., Suzuki S. Parietal dysfunction in developmental coordination disorder: a functional MRI study. Neuroreport. 2009;20:1319–1324. doi: 10.1097/WNR.0b013e32832f4d87.
    1. Konrad K., Neufang S., Hanisch C., Fink G.R., Herpertz-Dahlmann B. Dysfunctional attentional networks in children with attention deficit/hyperactivity disorder: evidence from an event-related functional magnetic resonance imaging study. Biological Psychiatry. 2006;59:643–651. doi: 10.1016/j.biopsych.2005.08.013.
    1. Lancaster J.L., Tordesillas-Gutierrez D., Martinez M., Salinas F., Evans A., Zilles K., Mazziotta J.C., Fox P.T. Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping. 2007;28:1194–1205. doi: 10.1002/hbm.20345.
    1. Lancaster J.L., Woldorff M.G., Parsons L.M., Liotti M., Freitas C.S., Rainey L., Kochunov P.V., Nickerson D., Mikiten S.A., Fox P.T. Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping. 2000;10:120–131. doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>;2-8.
    1. Langevin L., MacMaster F.P., Crawford S., Lebel C., Dewey D. Common white matter microstructure alterations in pediatric motor and attention disorders. The Journal of Pediatrics. 2014 doi: 10.1016/j.jpeds.2014.01.018. [published online ahead of print 25 Feb]
    1. Liakakis G., Nickel J., Seitz R.J. Diversity of the inferior frontal gyrus — a meta-analysis of neuroimaging studies. Behavioural Brain Research. 2011;225:341–347. doi: 10.1016/j.bbr.2011.06.022.
    1. Lingam R., Jongmans M.J., Ellis M., Hunt L.P., Golding J., Emond A. Mental health difficulties in children with developmental coordination disorder. Pediatrics. 2012;129:e882–91. doi: 10.1542/peds.2011-1556.
    1. Martinussen R., Hayden R., Hogg-Johnson S., Tannock R. A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry. 2005;44:377–384. doi: 10.1097/01.chi.0000153228.72591.73.
    1. Mostofsky S.H., Rimrodt S.L., Schafer J.G., Boyce A., Goldberg M.C., Pekar J.J., Denckla M.B. Atypical motor and sensory cortex activation in attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study of simple sequential finger tapping. Biological Psychiatry. 2006;59:48–56. doi: 10.1016/j.biopsych.2005.06.011.
    1. Nakao T., Radua J., Rubia K., Mataix-Cols D. Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. American Journal of Psychiatry. 2011;168:1154–1163.
    1. Piek J.P., Dyck M.J. Sensory-motor deficits in children with developmental coordination disorder, attention deficit hyperactivity disorder and autistic disorder. Human Movement Science. 2004;23:475–488. doi: 10.1016/j.humov.2004.08.019.
    1. Pitcher T.M., Piek J.P., Hay D.A. Fine and gross motor ability in males with ADHD. Developmental Medicine and Child Neurology. 2003;45:525–535.
    1. Querne L., Berquin P., Vernier-Hauvette M.P., Fall S., Deltour L., Meyer M.E., de Marco G. Dysfunction of the attentional brain network in children with developmental Coordination disorder: A fMRI study. Brain Research. 2008;1244:89–102. doi: 10.1016/j.brainres.2008.07.066.
    1. Ramtekkar U.P., Reiersen A.M., Todorov A.A., Todd R.D. Sex and age differences in attention-deficit/hyperactivity disorder symptoms and diagnoses: implications for DSM-V and ICD-11. Journal of the American Academy of Child and Adolescent Psychiatry. 2010;49:217–228. doi: 10.1016/j.jaac.2009.11.011.
    1. Reich W., Weltner Z., Herjanic B. The Diagnostic Interview for Children and Adolescents-IV. Multi-Health Systems; North Tonawanda, NY: 1997.
    1. Schall J.D. On the role of frontal eye field in guiding attention and saccades. Vision Research. 2004;44:1453–1467. doi: 10.1016/j.visres.2003.10.025.
    1. Shaw P., Eckstrand K., Sharp W., Blumenthal J., Lerch J.P., Greenstein D., Clasen L., Evans A., Giedd J., Rapoport J.L. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:19649–19654. doi: 10.1073/pnas.0707741104.
    1. Shaw P., Malek M., Watson B., Sharp W., Evans A., Greenstein D. Development of cortical surface area and gyrification in attention-deficit/hyperactivity disorder. Biological Psychiatry. 2012;72:191–197. doi: 10.1016/j.biopsych.2012.01.031.
    1. Smith S.M. Fast robust automated brain extraction. Human Brain Mapping. 2002;17:143–155. doi: 10.1002/hbm.10062.
    1. Suskauer S.J., Simmonds D.J., Caffo B.S., Denckla M.B., Pekar J.J., Mostofsky S.H. fMRI of intrasubject variability in ADHD: anomalous premotor activity with prefrontal compensation. Journal of the American Academy of Child and Adolescent Psychiatry. 2008;47:1141–1150. doi: 10.1097/CHI.0b013e3181825b1f.
    1. Swanson J.m., Posner M., Potkin S., Bonforte S., Youpa D., Fiore C., Cantwell D., Crinella F. Activating tasks for the study of visual–spatial attention in ADHD children: a cognitive anatomic approach. Journal of Child Neurology. 1991;6:S119–S127.
    1. Tian L., Jiang T., Wang Y., Zang Y., He Y., Liang M., Sui M., Cao Q., Hu S., Peng M., Zhuo Y. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neuroscience Letters. 2006;400:39–43. doi: 10.1016/j.neulet.2006.02.022.
    1. Valera E.M., Faraone S.V., Murray K.E., Seidman L.J. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biological Psychiatry. 2007;61:1361–1369. doi: 10.1016/j.biopsych.2006.06.011.
    1. Vannini P., Almkvist O., Franck A., Jonsson T., Volpe U., Kristoffersen Wiberg M., Wahlund L.O., Dierks T. Task demand modulations of visuospatial processing measured with functional magnetic resonance imaging. Neuroimage. 2004;21:58–68. doi: 10.1016/j.neuroimage.2003.09.033.
    1. Wilson B.N., Kaplan B.J., Crawford S.G., Campbell A., Dewey D. Reliability and validity of a parent questionnaire on childhood motor skills. American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association. 2000;54:484–493. doi: 10.5014/ajot.54.5.484.
    1. Wilson P.H., McKenzie B.E. Information processing deficits associated with developmental coordination disorder: a meta-analysis of research findings. Journal of Child Psychology and Psychiatry, and Allied Disciplines. 1998;39:829–840. doi: 10.1017/S002196309800276510.1111/1469-7610.00384.
    1. Woolrich M.W., Behrens T.E., Beckmann C.F., Jenkinson M., Smith S.M. Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage. 2004;21:1732–1747. doi: 10.1016/j.neuroimage.2003.12.023.
    1. Worsley K.J. Detecting activation in fMRI data. Statistical Methods in Medical Research. 2003;12:401–418. doi: 10.1191/0962280203sm340ra.
    1. Yousry T.A., Schmid U.D., Jassoy A.G., Schmidt D., Eisner W.E., Reulen H.J., Reiser M.F., Lissner J. Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology. 1995;195:23–29.
    1. Zang Y.F., He Y., Zhu C.Z., Cao Q.J., Sui M.Q., Liang M., Tian L.X., Jiang T.Z., Wang Y.F. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development. 2007;29:83–91. doi: 10.1016/j.braindev.2006.07.002.
    1. Zhang Y., Brady M., Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm. IEEE Transactions on Medical Imaging. 2001;20:45–57. doi: 10.1109/42.906424.
    1. Zwicker J.G., Missiuna C., Harris S.R., Boyd L.A. Brain activation of children with developmental coordination disorder is different than peers. Pediatrics. 2010;126:e678–e686. doi: 10.1542/peds.2010-0059.
    1. Zwicker J.G., Missiuna C., Harris S.R., Boyd L.A. Brain activation associated with motor skill practice in children with developmental coordination disorder: an fMRI study. International Journal of Developmental Neuroscience: the Official Journal of the International Society for Developmental Neuroscience. 2011;29:145–152. doi: 10.1016/j.ijdevneu.2010.12.002.
    1. Zwicker J.G., Missiuna C., Harris S.R., Boyd L.A. Developmental coordination disorder: a pilot diffusion tensor imaging study. Pediatric Neurology. 2012;46:162–167. doi: 10.1016/j.pediatrneurol.2011.12.007.

Source: PubMed

3
Subscribe