TGF-β Signaling and Resistance to Cancer Therapy

Maoduo Zhang, Ying Yi Zhang, Yongze Chen, Jia Wang, Qiang Wang, Hezhe Lu, Maoduo Zhang, Ying Yi Zhang, Yongze Chen, Jia Wang, Qiang Wang, Hezhe Lu

Abstract

The transforming growth factor β (TGF-β) pathway, which is well studied for its ability to inhibit cell proliferation in early stages of tumorigenesis while promoting epithelial-mesenchymal transition and invasion in advanced cancer, is considered to act as a double-edged sword in cancer. Multiple inhibitors have been developed to target TGF-β signaling, but results from clinical trials were inconsistent, suggesting that the functions of TGF-β in human cancers are not yet fully explored. Multiple drug resistance is a major challenge in cancer therapy; emerging evidence indicates that TGF-β signaling may be a key factor in cancer resistance to chemotherapy, targeted therapy and immunotherapy. Finally, combining anti-TGF-β therapy with other cancer therapy is an attractive venue to be explored for the treatment of therapy-resistant cancer.

Keywords: TGF-β; TGF-β pathway; chemotherapy resistance; immunotherapy resistance; targeted therapy resistance.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhang, Zhang, Chen, Wang, Wang and Lu.

Figures

FIGURE 1
FIGURE 1
TGF-β signaling pathway TGF-β transduces signaling through SMAD or non-SMAD signaling pathways. Actived TGF-β binds to TGF-β ligand, Once TGF-β binds to TβRII, TβRI is recruited, phosphorylated and activated to phosphorylate the downstream mediators-SMAD2 and SMAD3; then SMAD4 binds to activated SMAD2 and SMAD3 to form heterotrimeric transcriptional complexes that translocate and relay this signaling into the nucleus to further regulate transcription. This is called canonical TGF-β/SMAD signaling pathway (right). The non-SMAD-dependent activation of the TGF-β pathway involves signaling via RHO GTPases, P38, JNK, ERK or MEKK, and PI3K-AKT (left). Abbreviations: P, phosphorylation; TβR, transforming growth factor (TGF)-β receptor; ROCK, RHO-associated coiled-coil containing protein kinase; LIMK, LIM kinase; TRAF, TNF receptor-associated factor; TAK1, TGF-β-activated kinase-1. JNK, c-Jun N-terminal kinase; SHC, SRC homology 2 domain-containing transforming protein; GRB2, growth factor receptor-bound protein 2; SOS, son of sevenless; MEK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; PI3K, phosphatidylinositol-4,5-bisphosphate; mTOR, mechanistic target of rapamycin.
FIGURE 2
FIGURE 2
TGF-β signaling and resistance to targeted therapy Cancers with activating BRAF-mutations or EGFR-mutations as well as HER2-positive cancer are often treated with small molecular inhibitors against these molecular targets. For example, BRAFV600E is often targeted by BRAFi such as vemurafenib, MEK by MEKi such as tramelinib, and HER2 by trastuzumab, Upon kinase inhibitor treatment, receptor tyrosine kinase (RTK) signaling is turned off. In cells that activate TGF-β-induced drug resistance, TGF-β signaling functions by increasing the expression of EGFR, PDGFR, ERK, AKT/STAT to activate alternative survival pathways and suppress apoptosis, protecting tumor cells from targeted therapy.
FIGURE 3
FIGURE 3
TGF-β signaling and resistance to chemotherapy; Multiple miRNAs are implicated in TGF-β-induced chemotherapy resistance in various cancer types by targeting components of the TGF-β pathway (SMAD2, SMAD3, SMAD4). Anti-microtubule drugs promote Bcl-2 protein ubiquitination, which could be inhibited by TGF-β signaling to induce taxane resistance in malignancies. Hyperactivation of TGF-β signaling pathway induces resistance to DNA damaging agents and anti-metabolites through the activation of alternative survival pathways or anti-apoptotic signaling such as PI3K/AKT and ERK pathways, as well as elevated expression of ABC multi-drug transporters to facilitate cancer cell survival and drug efflux, respectively.
FIGURE 4
FIGURE 4
TGF-β signaling and resistance to immunotherapy; As an immunosuppression cytokine, TGF-β is secreted by both tumor and stromal cells. TGF-β signaling pathway directly inhibits T cell function by up-regulating the expression of FoxP3, converting cytotoxic T cells to Treg cells to restrain immune response. Besides, TGF-β impairs NK function by down-regulation of NKG2D and NKp30, two surface receptors directing NK cells to eliminate abnormal cells. TGF-β impairs antigen presentation in DC cells by decreasing MHCII expression. TGF-β signaling pathway polarizes macrophages to the pro-tumorigenic M2 phenotype by increasing Snail, converts N1 neutrophils to an N2 phenotype by up-regulation of arginine, CCL2, CCL5, and facilitates expansion of MDSCs leading to enhanced immune tolerance.

References

    1. Ali A., Wang Z., Fu J., Ji L., Liu J., Li L., et al. (2013). Differential Regulation of the REGγ-Proteasome Pathway by p53/TGF-β Signalling and Mutant P53 in Cancer Cells. Nat. Commun. 4, 2667. 10.1038/ncomms3667
    1. Antonicelli A., Cafarotti S., Indini A., Galli A., Russo A., Cesario A., et al. (2013). EGFR-targeted Therapy for Non-small Cell Lung Cancer: Focus on EGFR Oncogenic Mutation. Int. J. Med. Sci. 10, 320–330. 10.7150/ijms.4609
    1. Bai W.-D., Ye X.-M., Zhang M.-Y., Zhu H.-Y., Xi W.-J., Huang X., et al. (2014). MiR-200c Suppresses TGF-β Signaling and Counteracts Trastuzumab Resistance and Metastasis by Targeting ZNF217 and ZEB1 in Breast Cancer. Int. J. Cancer 135, 1356–1368. 10.1002/ijc.28782
    1. Bardeesy N., Cheng K.-h., Berger J. H., Chu G. C., Pahler J., Olson P., et al. (2006). Smad4 Is Dispensable for normal Pancreas Development yet Critical in Progression and Tumor Biology of Pancreas Cancer. Genes Development 20, 3130–3146. 10.1101/gad.1478706
    1. Batlle E., Massagué J. (2019). Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 50, 924–940. 10.1016/j.immuni.2019.03.024
    1. Bedi A., Chang X., Noonan K., Pham V., Bedi R., Fertig E. J., et al. (2012). Inhibition of TGF-β Enhances the In Vivo Antitumor Efficacy of EGF Receptor-Targeted Therapy. Mol. Cancer Ther. 11, 2429–2439. 10.1158/1535-7163.MCT-12-0101-T
    1. Bertrand C., Van Meerbeeck P., de Streel G., Vaherto-Bleeckx N., Benhaddi F., Rouaud L., et al. (2021). Combined Blockade of GARP:TGF-β1 and PD-1 Increases Infiltration of T Cells and Density of Pericyte-Covered GARP+ Blood Vessels in Mouse MC38 Tumors. Front. Immunol. 12, 704050. 10.3389/fimmu.2021.704050
    1. Bhagyaraj E., Ahuja N., Kumar S., Tiwari D., Gupta S., Nanduri R., et al. (2019). TGF-β Induced Chemoresistance in Liver Cancer Is Modulated by Xenobiotic Nuclear Receptor PXR. Cell Cycle 18, 3589–3602. 10.1080/15384101.2019.1693120
    1. Bhola N. E., Balko J. M., Dugger T. C., Kuba M. G., Sánchez V., Sanders M., et al. (2013). TGF-β Inhibition Enhances Chemotherapy Action against Triple-Negative Breast Cancer. J. Clin. Invest. 123, 1348–1358. 10.1172/JCI65416
    1. Bierie B., Moses H. L. (2006). TGFβ: the Molecular Jekyll and Hyde of Cancer. Nat. Rev. Cancer 6, 506–520. 10.1038/nrc1926
    1. Boku N. (2014). HER2-positive Gastric Cancer. Gastric Cancer 17, 1–12. 10.1007/s10120-013-0252-z
    1. Bouchard A., Collin B., Garrido C., Bellaye P.-S., Kohli E. (2021). GARP: A Key Target to Evaluate Tumor Immunosuppressive Microenvironment. Biology 10, 836. 10.3390/biology10090836
    1. Brown J. A., Yonekubo Y., Hanson N., Sastre-Perona A., Basin A., Rytlewski J. A., et al. (2017). TGF-β-Induced Quiescence Mediates Chemoresistance of Tumor-Propagating Cells in Squamous Cell Carcinoma. Cell Stem Cell 21, 650–664. 10.1016/j.stem.2017.10.001
    1. Brunen D., Willems S., Kellner U., Midgley R., Simon I., Bernards R. (2013). TGF-β: An Emerging Player in Drug Resistance. Cell Cycle 12, 2960–2968. 10.4161/cc.26034
    1. Bugide S., Parajuli K. R., Chava S., Pattanayak R., Manna D. L. D., Shrestha D., et al. (2020). Loss of HAT1 Expression Confers BRAFV600E Inhibitor Resistance to Melanoma Cells by Activating MAPK Signaling via IGF1R. Oncogenesis 9, 44. 10.1038/s41389-020-0228-x
    1. Cai J., Fang L., Huang Y., Li R., Xu X., Hu Z., et al. (2017). Simultaneous Overactivation of Wnt/β-Catenin and TGFβ Signalling by miR-128-3p Confers Chemoresistance-Associated Metastasis in NSCLC. Nat. Commun. 8, 15870. 10.1038/ncomms15870
    1. Calon A., Lonardo E., Berenguer-Llergo A., Espinet E., Hernando-Momblona X., Iglesias M., et al. (2015). Stromal Gene Expression Defines Poor-Prognosis Subtypes in Colorectal Cancer. Nat. Genet. 47, 320–329. 10.1038/ng.3225
    1. Castriconi R., Cantoni C., Della Chiesa M., Vitale M., Marcenaro E., Conte R., et al. (2003). Transforming Growth Factor 1 Inhibits Expression of NKp30 and NKG2D Receptors: Consequences for the NK-Mediated Killing of Dendritic Cells. Proc. Natl. Acad. Sci. 100, 4120–4125. 10.1073/pnas.0730640100
    1. Chen J., Ding Z.-y., Li S., Liu S., Xiao C., Li Z., et al. (2021). Targeting Transforming Growth Factor-β Signaling for Enhanced Cancer Chemotherapy. Theranostics 11, 1345–1363. 10.7150/thno.51383
    1. Chen L., Zhu Q., Lu L., Liu Y. (2020). MiR-132 Inhibits Migration and Invasion and Increases Chemosensitivity of Cisplatin-Resistant Oral Squamous Cell Carcinoma Cells via Targeting TGF-Β1. Bioengineered 11, 91–102. 10.1080/21655979.2019.1710925
    1. Chen Y., Yu G., Yu D., Zhu M. (2010). Pkcα-induced Drug Resistance in Pancreatic Cancer Cells Is Associated with Transforming Growth Factor-Β1. J. Exp. Clin. Cancer Res. 29, 104. 10.1186/1756-9966-29-104
    1. Chihara Y., Shimoda M., Hori A., Ohara A., Naoi Y., Ikeda J.-i., et al. (2017). A Small-Molecule Inhibitor of SMAD3 Attenuates Resistance to Anti-HER2 Drugs in HER2-Positive Breast Cancer Cells. Breast Cancer Res. Treat. 166, 55–68. 10.1007/s10549-017-4382-6
    1. Chuang H.-Y., Su Y.-k., Liu H.-W., Chen C.-H., Chiu S.-C., Cho D.-Y., et al. (2019). Preclinical Evidence of STAT3 Inhibitor Pacritinib Overcoming Temozolomide Resistance via Downregulating miR-21-Enriched Exosomes from M2 Glioblastoma-Associated Macrophages. Jcm 8, 959. 10.3390/jcm8070959
    1. Ciardiello D., Elez E., Tabernero J., Seoane J. (2020). Clinical Development of Therapies Targeting TGFβ: Current Knowledge and Future Perspectives. Ann. Oncol. 31, 1336–1349. 10.1016/j.annonc.2020.07.009
    1. Cioffi M., Trabulo S. M., Sanchez-Ripoll Y., Miranda-Lorenzo I., Lonardo E., Dorado J., et al. (2015). The miR-17-92 Cluster Counteracts Quiescence and Chemoresistance in a Distinct Subpopulation of Pancreatic Cancer Stem Cells. Gut 64, 1936–1948. 10.1136/gutjnl-2014-308470
    1. Colak S., Ten Dijke P. (2017). Targeting TGF-β Signaling in Cancer. Trends Cancer 3, 56–71. 10.1016/j.trecan.2016.11.008
    1. Cornell L., Wander S. A., Visal T., Wagle N., Shapiro G. I. (2019). MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cel Rep. 26, 2667–2680. 10.1016/j.celrep.2019.02.023
    1. Cortez V. S., Ulland T. K., Cervantes-Barragan L., Bando J. K., Robinette M. L., Wang Q., et al. (2017). SMAD4 Impedes the Conversion of NK Cells into ILC1-like Cells by Curtailing Non-canonical TGF-β Signaling. Nat. Immunol. 18, 995–1003. 10.1038/ni.3809
    1. Cristescu R., Mogg R., Ayers M., Albright A., Murphy E., Yearley J., et al. (2018). Pan-tumor Genomic Biomarkers for PD-1 Checkpoint Blockade-Based Immunotherapy. Science 362. eaar3593. 10.1126/science.aar3593
    1. David J. M., Dominguez C., McCampbell K. K., Gulley J. L., Schlom J., Palena C. (2017). A Novel Bifunctional Anti-PD-l1/tgf-β Trap Fusion Protein (M7824) Efficiently Reverts Mesenchymalization of Human Lung Cancer Cells. Oncoimmunology 6, e1349589. 10.1080/2162402X.2017.1349589
    1. de Streel G., Bertrand C., Chalon N., Liénart S., Bricard O., Lecomte S., et al. (2020). Selective Inhibition of TGF-Β1 Produced by GARP-Expressing Tregs Overcomes Resistance to PD-1/pd-L1 Blockade in Cancer. Nat. Commun. 11, 4545. 10.1038/s41467-020-17811-3
    1. Derynck R., Zhang Y. E. (2003). Smad-dependent and Smad-independent Pathways in TGF-β Family Signalling. Nature 425, 577–584. 10.1038/nature02006
    1. Dimitriadis E., White C. A., Jones R. L., Salamonsen L. A. (2005). Cytokines, Chemokines and Growth Factors in Endometrium Related to Implantation. Hum. Reprod. Update 11, 613–630. 10.1093/humupd/dmi023
    1. Dodagatta-Marri E., Meyer D. S., Reeves M. Q., Paniagua R., To M. D., Binnewies M., et al. (2019). α-PD-1 Therapy Elevates Treg/Th Balance and Increases Tumor Cell pSmad3 that Are Both Targeted by α-TGFβ Antibody to Promote Durable Rejection and Immunity in Squamous Cell Carcinomas. J. Immunotherapy Cancer 7, 62. 10.1186/s40425-018-0493-9
    1. Draghiciu O., Lubbers J., Nijman H. W., Daemen T. (2015). Myeloid Derived Suppressor Cells-An Overview of Combat Strategies to Increase Immunotherapy Efficacy. Oncoimmunology 4, e954829. 10.4161/21624011.2014.954829
    1. Du W., Sun L., Liu T., Zhu J., Zeng Y., Zhang Y., et al. (2020). The miR-625-3p/AXL axis I-nduces non-T790M A-cquired R-esistance to EGFR-TKI via A-ctivation of the TGF-β/Smad P-athway and EMT in EGFR-mutant N-on-small C-ell L-ung C-ancer. Oncol. Rep. 44, 185–195. 10.3892/or.2020.7579
    1. Esteva F. J., Valero V., Booser D., Guerra L. T., Murray J. L., Pusztai L., et al. (2002). Phase II Study of Weekly Docetaxel and Trastuzumab for Patients with HER-2-Overexpressing Metastatic Breast Cancer. Jco 20, 1800–1808. 10.1200/JCO.2002.07.058
    1. Faião-Flores F., Alves-Fernandes D. K., Pennacchi P. C., Sandri S., Vicente A. L. S. A., Scapulatempo-Neto C., et al. (2017). Targeting the Hedgehog Transcription Factors GLI1 and GLI2 Restores Sensitivity to Vemurafenib-Resistant Human Melanoma Cells. Oncogene 36, 1849–1861. 10.1038/onc.2016.348
    1. Falzone L., Salomone S., Libra M. (2018). Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front. Pharmacol. 9, 1300. 10.3389/fphar.2018.01300
    1. Fang J. Y., Richardson B. C. (2005). The MAPK Signalling Pathways and Colorectal Cancer. Lancet Oncol. 6, 322–327. 10.1016/s1470-2045(05)70168-6
    1. Farber S., Diamond L. K., Mercer R. D., Sylvester R. F., Wolff J. A. (1948). Temporary Remissions in Acute Leukemia in Children Produced by Folic Acid Antagonist, 4-Aminopteroyl-Glutamic Acid (Aminopterin). N. Engl. J. Med. 238, 787–793. 10.1056/nejm194806032382301
    1. Fedorenko I. V., Wargo J. A., Flaherty K. T., Messina J. L., Smalley K. S. M. (2015). BRAF Inhibition Generates a Host-Tumor Niche that Mediates Therapeutic Escape. J. Invest. Dermatol. 135, 3115–3124. 10.1038/jid.2015.329
    1. Feng H., Zhang Q., Zhao Y., Zhao L., Shan B. (2020). Leptin Acts on Mesenchymal Stem Cells to Promote Chemoresistance in Osteosarcoma Cells. Aging 12, 6340–6351. 10.18632/aging.103027
    1. Fischer K. R., Durrans A., Lee S., Sheng J., Li F., Wong S. T. C., et al. (2015). Epithelial-to-mesenchymal Transition Is Not Required for Lung Metastasis but Contributes to Chemoresistance. Nature 527, 472–476. 10.1038/nature15748
    1. Fridlender Z. G., Sun J., Kim S., Kapoor V., Cheng G., Ling L., et al. (2009). Polarization of Tumor-Associated Neutrophil Phenotype by TGF-β: "N1" versus "N2" TAN. Cancer Cell 16, 183–194. 10.1016/j.ccr.2009.06.017
    1. Ganesh K., Massagué J. (2018). TGF-β Inhibition and Immunotherapy: Checkmate. Immunity 48, 626–628. 10.1016/j.immuni.2018.03.037
    1. Gao Y., Souza-Fonseca-Guimaraes F., Bald T., Ng S. S., Young A., Ngiow S. F., et al. (2017). Tumor Immunoevasion by the Conversion of Effector NK Cells into Type 1 Innate Lymphoid Cells. Nat. Immunol. 18, 1004–1015. 10.1038/ni.3800
    1. Giampieri S., Manning C., Hooper S., Jones L., Hill C. S., Sahai E. (2009). Localized and Reversible TGFβ Signalling Switches Breast Cancer Cells from Cohesive to Single Cell Motility. Nat. Cel Biol 11, 1287–1296. 10.1038/ncb1973
    1. Goodman L. S., Wintrobe M. M. (1946). Nitrogen Mustard Therapy. Jama 132, 126–132. 10.1001/jama.1946.02870380008004
    1. Guasch G., Schober M., Pasolli H. A., Conn E. B., Polak L., Fuchs E. (2007). Loss of TGFβ Signaling Destabilizes Homeostasis and Promotes Squamous Cell Carcinomas in Stratified Epithelia. Cancer Cell 12, 313–327. 10.1016/j.ccr.2007.08.020
    1. Guo B., Wu S., Zhu X., Zhang L., Deng J., Li F., et al. (2020). Micropeptide CIP 2A‐ BP Encoded by LINC 00665 Inhibits Triple‐negative Breast Cancer Progression. EMBO J. 39, e102190. 10.15252/embj.2019102190
    1. Harbeck N., Gnant M. (2017). Breast Cancer. The Lancet 389, 1134–1150. 10.1016/S0140-6736(16)31891-8
    1. He R., Wang M., Zhao C., Shen M., Yu Y., He L., et al. (2019). TFEB-driven Autophagy Potentiates TGF-β Induced Migration in Pancreatic Cancer Cells. J. Exp. Clin. Cancer Res. 38, 340. 10.1186/s13046-019-1343-4
    1. Heldin C.-H., Moustakas A. (2016). Signaling Receptors for TGF-β Family Members. Cold Spring Harb Perspect. Biol. 8, a022053. 10.1101/cshperspect.a022053
    1. Hesler R. A., Huang J. J., Starr M. D., Treboschi V. M., Bernanke A. G., Nixon A. B., et al. (2016). TGF-β-induced Stromal CYR61 Promotes Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma through Downregulation of the Nucleoside Transporters hENT1 and hCNT3. Carcin 37, 1041–1051. 10.1093/carcin/bgw093
    1. Huang S., Hölzel M., Knijnenburg T., Schlicker A., Roepman P., McDermott U., et al. (2012). MED12 Controls the Response to Multiple Cancer Drugs through Regulation of TGF-β Receptor Signaling. Cell 151, 937–950. 10.1016/j.cell.2012.10.035
    1. Huang W., Yang Y., Wu J., Niu Y., Yao Y., Zhang J., et al. (2020). Circular RNA cESRP1 Sensitises Small Cell Lung Cancer Cells to Chemotherapy by Sponging miR-93-5p to Inhibit TGF-β Signalling. Cell Death Differ 27, 1709–1727. 10.1038/s41418-019-0455-x
    1. Jalalirad M., Haddad T. C., Salisbury J. L., Radisky D., Zhang M., Schroeder M., et al. (2021). Aurora-A Kinase Oncogenic Signaling Mediates TGF-β-Induced Triple-Negative Breast Cancer Plasticity and Chemoresistance. Oncogene 40, 2509–2523. 10.1038/s41388-021-01711-x
    1. Jenkins M. H., Croteau W., Mullins D. W., Brinckerhoff C. E. (2015). The BRAFV600E Inhibitor, PLX4032, Increases Type I Collagen Synthesis in Melanoma Cells. Matrix Biol. 48, 66–77. 10.1016/j.matbio.2015.05.007
    1. Jiang G.-M., Tan Y., Wang H., Peng L., Chen H.-T., Meng X.-J., et al. (2019). The Relationship between Autophagy and the Immune System and its Applications for Tumor Immunotherapy. Mol. Cancer 18, 17. 10.1186/s12943-019-0944-z
    1. Jiang Y., Woosley A. N., Sivalingam N., Natarajan S., Howe P. H. (2016). Cathepsin-B-mediated Cleavage of Disabled-2 Regulates TGF-β-Induced Autophagy. Nat. Cel Biol 18, 851–863. 10.1038/ncb3388
    1. Jiang Z., Yin J., Fu W., Mo Y., Pan Y., Dai L., et al. (2014). MiRNA 17 Family Regulates Cisplatin-Resistant and Metastasis by Targeting TGFbetaR2 in NSCLC. PLoS One 9, e94639. 10.1371/journal.pone.0094639
    1. Joshi J. P., Brown N. E., Griner S. E., Nahta R. (2011). Growth Differentiation Factor 15 (GDF15)-Mediated HER2 Phosphorylation Reduces Trastuzumab Sensitivity of HER2-Overexpressing Breast Cancer Cells. Biochem. Pharmacol. 82, 1090–1099. 10.1016/j.bcp.2011.07.082
    1. Kazandjian D., Blumenthal G. M., Yuan W., He K., Keegan P., Pazdur R. (2016). FDA Approval of Gefitinib for the Treatment of Patients with Metastatic EGFR Mutation-Positive Non-small Cell Lung Cancer. Clin. Cancer Res. 22, 1307–1312. 10.1158/1078-0432.CCR-15-2266
    1. Kennedy L. B., Salama A. K. S. (2020). A Review of Cancer Immunotherapy Toxicity. CA A. Cancer J. Clin. 70, 86–104. 10.3322/caac.21596
    1. Kloss C. C., Lee J., Zhang A., Chen F., Melenhorst J. J., Lacey S. F., et al. (2018). Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation and Augments Prostate Cancer Eradication. Mol. Ther. 26, 1855–1866. 10.1016/j.ymthe.2018.05.003
    1. Koetz-Ploch L., Hanniford D., Dolgalev I., Sokolova E., Zhong J., Díaz-Martínez M., et al. (2017). MicroRNA-125a Promotes Resistance to BRAF Inhibitors through Suppression of the Intrinsic Apoptotic Pathway. Pigment Cel Melanoma Res. 30, 328–338. 10.1111/pcmr.12578
    1. Kuo M.-H., Lee A.-C., Hsiao S.-H., Lin S.-E., Chiu Y.-F., Yang L.-H., et al. (2020). Cross-talk between SOX2 and TGFβ Signaling Regulates EGFR-TKI Tolerance and Lung Cancer Dissemination. Cancer Res. 80, 4426–4438. 10.1158/0008-5472.CAN-19-3228
    1. Kurimoto R., Iwasawa S., Ebata T., Ishiwata T., Sekine I., Tada Y., et al. (2016). Drug Resistance Originating from a TGF-Β/fgf-2-Driven Epithelial-To-Mesenchymal Transition and its Reversion in Human Lung Adenocarcinoma Cell Lines Harboring an EGFR Mutation. Int. J. Oncol. 48, 1825–1836. 10.3892/ijo.2016.3419
    1. Lambies G., Miceli M., Martínez-Guillamon C., Olivera-Salguero R., Peña R., Frías C.-P., et al. (2019). Tgfβ-Activated USP27X Deubiquitinase Regulates Cell Migration and Chemoresistance via Stabilization of Snail1. Cancer Res. 79, 33–46. 10.1158/0008-5472.CAN-18-0753
    1. Lan Y., Zhang D., Xu C., Hance K. W., Marelli B., Qi J., et al. (2018). Enhanced Preclinical Antitumor Activity of M7824, a Bifunctional Fusion Protein Simultaneously Targeting PD-L1 and TGF-β. Sci. Transl. Med. 10. 10.1126/scitranslmed.aan5488
    1. Larson C., Oronsky B., Carter C. A., Oronsky A., Knox S. J., Sher D., et al. (2020). TGF-beta: a Master Immune Regulator. Expert Opin. Ther. Targets 24, 427–438. 10.1080/14728222.2020.1744568
    1. Latifi Z., Nejabati H. R., Abroon S., Mihanfar A., Farzadi L., Hakimi P., et al. (2019). Dual Role of TGF-β in Early Pregnancy: Clues from Tumor Progression. Biol. Reprod. 100, 1417–1430. 10.1093/biolre/ioz024
    1. Lazarova M., Steinle A. (2019). Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Front. Immunol. 10, 2689. 10.3389/fimmu.2019.02689
    1. Lee M. K., Pardoux C., Hall M. C., Lee P. S., Warburton D., Qing J., et al. (2007). TGF-β Activates Erk MAP Kinase Signalling through Direct Phosphorylation of ShcA. Embo J. 26, 3957–3967. 10.1038/sj.emboj.7601818
    1. Lee S., Rauch J., Kolch W. (2020). Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Ijms 21, 1102. 10.3390/ijms21031102
    1. Levy L., Hill C. (2006). Alterations in Components of the TGF-β Superfamily Signaling Pathways in Human Cancer. Cytokine Growth Factor. Rev. 17, 41–58. 10.1016/j.cytogfr.2005.09.009
    1. Li H., Li J., Chen L., Qi S., Yu S., Weng Z., et al. (2019). HERC3-Mediated SMAD7 Ubiquitination Degradation Promotes Autophagy-Induced EMT and Chemoresistance in Glioblastoma. Clin. Cancer Res. 25, 3602–3616. 10.1158/1078-0432.CCR-18-3791
    1. Li J., Ao J., Li K., Zhang J., Li Y., Zhang L., et al. (2016). ZNF32 Contributes to the Induction of Multidrug Resistance by Regulating TGF-β Receptor 2 Signaling in Lung Adenocarcinoma. Cell Death Dis 7, e2428. 10.1038/cddis.2016.328
    1. Li K., Yang L., Li J., Guan C., Zhang S., Lao X., et al. (2019). TGFβ Induces Stemness through Non-canonical AKT-FOXO3a axis in Oral Squamous Cell Carcinoma. EBioMedicine 48, 70–80. 10.1016/j.ebiom.2019.09.027
    1. Li S., Liu M., Do M. H., Chou C., Stamatiades E. G., Nixon B. G., et al. (2020). Cancer Immunotherapy via Targeted TGF-β Signalling Blockade in TH Cells. Nature 587, 121–125. 10.1038/s41586-020-2850-3
    1. Li S., Song Y., Quach C., Guo H., Jang G.-B., Maazi H., et al. (2019). Transcriptional Regulation of Autophagy-Lysosomal Function in BRAF-Driven Melanoma Progression and Chemoresistance. Nat. Commun. 10, 1693. 10.1038/s41467-019-09634-8
    1. Li Y., Zhang B., Xiang L., Xia S., Kucuk O., Deng X., et al. (2020). TGF-β Causes Docetaxel Resistance in Prostate Cancer via the Induction of Bcl-2 by Acetylated KLF5 and Protein Stabilization. Theranostics 10, 7656–7670. 10.7150/thno.44567
    1. Li Z., Zhou W., Zhang Y., Sun W., Yung M. M. H., Sun J., et al. (2019). ERK Regulates HIF1α-Mediated Platinum Resistance by Directly Targeting PHD2 in Ovarian Cancer. Clin. Cancer Res. 25, 5947–5960. 10.1158/1078-0432.CCR-18-4145
    1. Lin T.-H., Lee S. O., Niu Y., Xu D., Liang L., Li L., et al. (2013). Differential Androgen Deprivation Therapies with Anti-androgens Casodex/Bicalutamide or MDV3100/Enzalutamide versus Anti-androgen Receptor ASC-J9 Lead to Promotion versus Suppression of Prostate Cancer Metastasis. J. Biol. Chem. 288, 19359–19369. 10.1074/jbc.M113.477216
    1. Lind H., Gameiro S. R., Jochems C., Donahue R. N., Strauss J., Gulley J. L., et al. (2020). Dual Targeting of TGF-β and PD-L1 via a Bifunctional Anti-PD-l1/tgf-βrii Agent: Status of Preclinical and Clinical Advances. J. Immunother. Cancer 8, e000433. 10.1136/jitc-2019-000433
    1. Liu F., Korc M. (2012). Cdk4/6 Inhibition Induces Epithelial-Mesenchymal Transition and Enhances Invasiveness in Pancreatic Cancer Cells. Mol. Cancer Ther. 11, 2138–2148. 10.1158/1535-7163.MCT-12-0562
    1. Liu M., Kuo F., Capistrano K. J., Kang D., Nixon B. G., Shi W., et al. (2020). TGF-β Suppresses Type 2 Immunity to Cancer. Nature 587, 115–120. 10.1038/s41586-020-2836-1
    1. Liu Q., Tong D., Liu G., Xu J., Do K., Geary K., et al. (2017). Metformin Reverses Prostate Cancer Resistance to Enzalutamide by Targeting TGF-Β1/stat3 axis-regulated EMT. Cel Death Dis 8–e3007. 10.1038/cddis.2017.417
    1. Lu H., Liu S., Zhang G., Bin Wu fnm., Zhu Y., Frederick D. T., et al. (2017). PAK Signalling Drives Acquired Drug Resistance to MAPK Inhibitors in BRAF-Mutant Melanomas. Nature 550, 133–136. 10.1038/nature24040
    1. Mariathasan S., Turley S. J., Nickles D., Castiglioni A., Yuen K., Wang Y., et al. (2018). TGFβ Attenuates Tumour Response to PD-L1 Blockade by Contributing to Exclusion of T Cells. Nature 554, 544–548. 10.1038/nature25501
    1. Martin C. J., Datta A., Littlefield C., Kalra A., Chapron C., Wawersik S., et al. (2020). Selective Inhibition of TGFβ1 Activation Overcomes Primary Resistance to Checkpoint Blockade Therapy by Altering Tumor Immune Landscape. Sci. Transl. Med. 12. 10.1126/scitranslmed.aay8456
    1. Massagué J. (2008). TGFβ in Cancer. Cell 134, 215–230. 10.1016/j.cell.2008.07.001
    1. Morikawa M., Derynck R., Miyazono K. (2016). TGF-β and the TGF-β Family: Context-dependent Roles in Cell and Tissue Physiology. Cold Spring Harb Perspect. Biol. 8, a021873. 10.1101/cshperspect.a021873
    1. Moses H. L., Roberts A. B., Derynck R. (2016). The Discovery and Early Days of TGF-β: A Historical Perspective. Cold Spring Harb Perspect. Biol. 8, a021865. 10.1101/cshperspect.a021865
    1. Nakamura K., Kitani A., Strober W. (2001). Cell Contact-dependent Immunosuppression by Cd4+Cd25+Regulatory T Cells Is Mediated by Cell Surface-Bound Transforming Growth Factor β. J. Exp. Med. 194, 629–644. 10.1084/jem.194.5.629
    1. Nandan D., Reiner N. E. (1997). TGF-beta Attenuates the Class II Transactivator and Reveals an Accessory Pathway of IFN-Gamma Action. J. Immunol. 158, 1095–1101.
    1. Nussinov R., Tsai C.-J., Jang H. (2017). A New View of Pathway-Driven Drug Resistance in Tumor Proliferation. Trends Pharmacol. Sci. 38, 427–437. 10.1016/j.tips.2017.02.001
    1. Okada Y., Wang T., Kasai K., Suzuki K., Takikawa Y. (2018). Regulation of Transforming Growth Factor Is Involved in the Efficacy of Combined 5-fluorouracil and Interferon Alpha-2b Therapy of Advanced Hepatocellular Carcinoma. Cel Death Discov. 4, 42. 10.1038/s41420-018-0040-y
    1. Oppermann S., Ylanko J., Shi Y., Hariharan S., Oakes C. C., Brauer P. M., et al. (2016). High-content Screening Identifies Kinase Inhibitors that Overcome Venetoclax Resistance in Activated CLL Cells. Blood 128, 934–947. 10.1182/blood-2015-12-687814
    1. Oshimori N., Oristian D., Fuchs E. (2015). TGF-β Promotes Heterogeneity and Drug Resistance in Squamous Cell Carcinoma. Cell 160, 963–976. 10.1016/j.cell.2015.01.043
    1. Paller C., Pu H., Begemann D. E., Wade C. A., Hensley P. J., Kyprianou N. (2019). TGF-β Receptor I Inhibitor Enhances Response to Enzalutamide in a Pre-clinical Model of Advanced Prostate Cancer. Prostate 79, 31–43. 10.1002/pros.23708
    1. Palomeras S., Diaz-Lagares Á., Viñas G., Setien F., Ferreira H. J., Oliveras G., et al. (2019). Epigenetic Silencing of TGFBI Confers Resistance to Trastuzumab in Human Breast Cancer. Breast Cancer Res. 21, 79. 10.1186/s13058-019-1160-x
    1. Park B. V., Freeman Z. T., Ghasemzadeh A., Chattergoon M. A., Rutebemberwa A., Steigner J., et al. (2016). TGFβ1-Mediated SMAD3 Enhances PD-1 Expression on Antigen-specific T Cells in Cancer. Cancer Discov. 6, 1366–1381. 10.1158/-15-1347
    1. Piskurich J. F., Wang Y., Linhoff M. W., White L. C., Ting J. P. (1998). Identification of Distinct Regions of 5' Flanking DNA that Mediate Constitutive, IFN-Gamma, STAT1, and TGF-Beta-Regulated Expression of the Class II Transactivator Gene. J. Immunol. 160, 233–240.
    1. Prete A., Lo A. S., Sadow P. M., Bhasin S. S., Antonello Z. A., Vodopivec D. M., et al. (2018). Pericytes Elicit Resistance to Vemurafenib and Sorafenib Therapy in Thyroid Carcinoma via the TSP-1/TGFβ1 Axis. Clin. Cancer Res. 24, 6078–6097. 10.1158/1078-0432.CCR-18-0693
    1. Principe D. R., Diaz A. M., Torres C., Mangan R. J., DeCant B., McKinney R., et al. (2017). TGFβ Engages MEK/ERK to Differentially Regulate Benign and Malignant Pancreas Cell Function. Oncogene 36, 4336–4348. 10.1038/onc.2016.500
    1. Principe D. R., Park A., Dorman M. J., Kumar S., Viswakarma N., Rubin J., et al. (2019). TGFβ Blockade Augments PD-1 Inhibition to Promote T-Cell-Mediated Regression of Pancreatic Cancer. Mol. Cancer Ther. 18, 613–620. 10.1158/1535-7163.MCT-18-0850
    1. Qiu W.-L., Tseng A.-J., Hsu H.-Y., Hsu W.-H., Lin Z.-H., Hua W.-J., et al. (2020). Fucoidan Increased the Sensitivity to Gefitinib in Lung Cancer Cells Correlates with Reduction of TGFβ-Mediated Slug Expression. Int. J. Biol. Macromolecules 153, 796–805. 10.1016/j.ijbiomac.2020.03.066
    1. Quan Q., Zhong F., Wang X., Chen K., Guo L. (2019). PAR2 Inhibition Enhanced the Sensitivity of Colorectal Cancer Cells to 5-FU and Reduced EMT Signaling. Oncol. Res. 27, 779–788. 10.3727/096504018X15442985680348
    1. Rachidi S., Metelli A., Riesenberg B., Wu B. X., Nelson M. H., Wallace C., et al. (2017). Platelets Subvert T Cell Immunity against Cancer via GARP-Tgfβ axis. Sci. Immunol. 2. eaai7911. 10.1126/sciimmunol.aai7911
    1. Ravi R., Noonan K. A., Pham V., Bedi R., Zhavoronkov A., Ozerov I. V., et al. (2018). Bifunctional Immune Checkpoint-Targeted Antibody-Ligand Traps that Simultaneously Disable TGFβ Enhance the Efficacy of Cancer Immunotherapy. Nat. Commun. 9, 741. 10.1038/s41467-017-02696-6
    1. Rizos H., Menzies A. M., Pupo G. M., Carlino M. S., Fung C., Hyman J., et al. (2014). BRAF Inhibitor Resistance Mechanisms in Metastatic Melanoma: Spectrum and Clinical Impact. Clin. Cancer Res. 20, 1965–1977. 10.1158/1078-0432.CCR-13-3122
    1. Roberts A. B., Wakefield L. M. (2003). The Two Faces of Transforming Growth Factor in Carcinogenesis. Proc. Natl. Acad. Sci. 100, 8621–8623. 10.1073/pnas.1633291100
    1. Rodig S. J., Gusenleitner D., Jackson D. G., Gjini E., Giobbie-Hurder A., Jin C., et al. (2018). MHC Proteins Confer Differential Sensitivity to CTLA-4 and PD-1 Blockade in Untreated Metastatic Melanoma. Sci. Transl. Med. 10. eaar3342. 10.1126/scitranslmed.aar3342
    1. Salesse S., Verfaillie C. M. (2002). BCR/ABL: from Molecular Mechanisms of Leukemia Induction to Treatment of Chronic Myelogenous Leukemia. Oncogene 21, 8547–8559. 10.1038/sj.onc.1206082
    1. Santarpia L., Lippman S. M., El-Naggar A. K. (2012). Targeting the MAPK-RAS-RAF Signaling Pathway in Cancer Therapy. Expert Opin. Ther. Targets 16, 103–119. 10.1517/14728222.2011.645805
    1. Seed R. I., Kobayashi K., Ito S., Takasaka N., Cormier A., Jespersen J. M., et al. (2021). A Tumor-specific Mechanism of T Reg Enrichment Mediated by the Integrin αvβ8. Sci. Immunol. 6, eabf0558. 10.1126/sciimmunol.abf0558
    1. Serizawa M., Takahashi T., Yamamoto N., Koh Y. (2013). Combined Treatment with Erlotinib and a Transforming Growth Factor-β Type I Receptor Inhibitor Effectively Suppresses the Enhanced Motility of Erlotinib-Resistant Non-small-cell Lung Cancer Cells. J. Thorac. Oncol. 8, 259–269. 10.1097/JTO.0b013e318279e942
    1. Serova M., Tijeras-Raballand A., Santos C. D., Albuquerque M., Paradis V., Neuzillet C., et al. (2015). Effects of TGF-Beta Signalling Inhibition with Galunisertib (LY2157299) in Hepatocellular Carcinoma Models and Inex Vivowhole Tumor Tissue Samples from Patients. Oncotarget 6, 21614–21627. 10.18632/oncotarget.4308
    1. Shan G., Gu J., Zhou D., Li L., Cheng W., Wang Y., et al. (2020). Cancer-associated Fibroblast-Secreted Exosomal miR-423-5p Promotes Chemotherapy Resistance in Prostate Cancer by Targeting GREM2 through the TGF-β Signaling Pathway. Exp. Mol. Med. 52, 1809–1822. 10.1038/s12276-020-0431-z
    1. Sharma P., Hu-Lieskovan S., Wargo J. A., Ribas A. (2017). Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 168, 707–723. 10.1016/j.cell.2017.01.017
    1. Shi X., Mihaylova V. T., Kuruvilla L., Chen F., Viviano S., Baldassarre M., et al. (2016). Loss of TRIM33 Causes Resistance to BET Bromodomain Inhibitors through MYC- and TGF-β-dependent Mechanisms. Proc. Natl. Acad. Sci. USA 113, E4558–E4566. 10.1073/pnas.1608319113
    1. Siewe N., Friedman A. (2021). TGF-β Inhibition Can Overcome Cancer Primary Resistance to PD-1 Blockade: A Mathematical Model. PLoS One 16, e0252620. 10.1371/journal.pone.0252620
    1. Smith M. P., Ferguson J., Arozarena I., Hayward R., Marais R., Chapman A., et al. (2013). Effect of SMURF2 Targeting on Susceptibility to MEK Inhibitors in Melanoma. J. Natl. Cancer Inst. 105, 33–46. 10.1093/jnci/djs471
    1. Song B., Park S.-H., Zhao J. C., Fong K.-w., Li S., Lee Y., et al. (2018). Targeting FOXA1-Mediated Repression of TGF-β Signaling Suppresses Castration-Resistant Prostate Cancer Progression. J. Clin. Invest. 129, 569–582. 10.1172/JCI122367
    1. Song B., Park S.-H., Zhao J. C., Fong K.-w., Li S., Lee Y., et al. (2018). Targeting FOXA1-Mediated Repression of TGF-β Signaling Suppresses Castration-Resistant Prostate Cancer Progression. J. Clin. Invest. 129, 569–582. 10.1172/JCI122367
    1. Sorrentino A., Thakur N., Grimsby S., Marcusson A., von Bulow V., Schuster N., et al. (2008). The Type I TGF-β Receptor Engages TRAF6 to Activate TAK1 in a Receptor Kinase-independent Manner. Nat. Cel Biol 10, 1199–1207. 10.1038/ncb1780
    1. Soucheray M., Capelletti M., Pulido I., Kuang Y., Paweletz C. P., Becker J. H., et al. (2015). Intratumoral Heterogeneity in EGFR-Mutant NSCLC Results in Divergent Resistance Mechanisms in Response to EGFR Tyrosine Kinase Inhibition. Cancer Res. 75, 4372–4383. 10.1158/0008-5472.CAN-15-0377
    1. Sow H., Ren J., Camps M., Ossendorp F., Ten Dijke P. (2019). Combined Inhibition of TGF-β Signaling and the PD-L1 Immune Checkpoint Is Differentially Effective in Tumor Models. Cells 8, 320. 10.3390/cells8040320
    1. Sun C., Wang F.-J., Zhang H.-G., Xu X.-Z., Jia R.-C., Yao L., et al. (2017). miR-34a Mediates Oxaliplatin Resistance of Colorectal Cancer Cells by Inhibiting Macroautophagy via Transforming Growth Factor-β/Smad4 Pathway. Wjg 23, 1816–1827. 10.3748/wjg.v23.i10.1816
    1. Sun C., Wang L., Huang S., Heynen G. J. J. E., Prahallad A., Robert C., et al. (2014). Reversible and Adaptive Resistance to BRAF(V600E) Inhibition in Melanoma. Nature 508, 118–122. 10.1038/nature13121
    1. Tang N., Cheng C., Zhang X., Qiao M., Li N., Mu W., et al. (2020). TGF-β Inhibition via CRISPR Promotes the Long-Term Efficacy of CAR T Cells against Solid Tumors. JCI Insight 5, e133977. 10.1172/jci.insight.133977
    1. Tang Y.-A., Chen Y.-f., Bao Y., Mahara S., Yatim S. M. J. M., Oguz G., et al. (2018). Hypoxic Tumor Microenvironment Activates GLI2 via HIF-1α and TGF-Β2 to Promote Chemoresistance in Colorectal Cancer. Proc. Natl. Acad. Sci. USA 115, E5990–E5999. 10.1073/pnas.1801348115
    1. Taniguchi S., Elhance A., Van Duzer A., Kumar S., Leitenberger J. J., Oshimori N. (2020). Tumor-initiating Cells Establish an IL-33-TGF-β Niche Signaling Loop to Promote Cancer Progression. Science 369, eaay1813. 10.1126/science.aay1813
    1. Tauriello D. V. F. (2019). From Poor Prognosis to Promising Treatment. Science 363, 1051. 10.1126/science.aaw3609
    1. Tauriello D. V. F., Palomo-Ponce S., Stork D., Berenguer-Llergo A., Badia-Ramentol J., Iglesias M., et al. (2018). TGFβ Drives Immune Evasion in Genetically Reconstituted colon Cancer Metastasis. Nature 554, 538–543. 10.1038/nature25492
    1. Thomas D. A., Massagué J. (2005). TGF-β Directly Targets Cytotoxic T Cell Functions during Tumor Evasion of Immune Surveillance. Cancer Cell 8, 369–380. 10.1016/j.ccr.2005.10.012
    1. Tone Y., Furuuchi K., Kojima Y., Tykocinski M. L., Greene M. I., Tone M. (2008). Smad3 and NFAT Cooperate to Induce Foxp3 Expression through its Enhancer. Nat. Immunol. 9, 194–202. 10.1038/ni1549
    1. Tripathi V., Shin J.-H., Stuelten C. H., Zhang Y. E. (2019). TGF-β-induced Alternative Splicing of TAK1 Promotes EMT and Drug Resistance. Oncogene 38, 3185–3200. 10.1038/s41388-018-0655-8
    1. Tumeh P. C., Harview C. L., Yearley J. H., Shintaku I. P., Taylor E. J. M., Robert L., et al. (2014). PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature 515, 568–571. 10.1038/nature13954
    1. Turley S. J., Cremasco V., Astarita J. L. (2015). Immunological Hallmarks of Stromal Cells in the Tumour Microenvironment. Nat. Rev. Immunol. 15, 669–682. 10.1038/nri3902
    1. Ungefroren H. (2019). Blockade of TGF-β Signaling: a Potential Target for Cancer Immunotherapy? Expert Opin. Ther. Targets 23, 679–693. 10.1080/14728222.2019.1636034
    1. van den Bulk J., Verdegaal E. M., de Miranda N. F. (2018). Cancer Immunotherapy: Broadening the Scope of Targetable Tumours. Open Biol. 8, 180037. 10.1098/rsob.180037
    1. Vu T., Yang S., Datta P. K. (2020). MiR-216b/Smad3/BCL-2 Axis Is Involved in Smoking-Mediated Drug Resistance in Non-small Cell Lung Cancer. Cancers 12, 1879. 10.3390/cancers12071879
    1. Wang S. E., Xiang B., Zent R., Quaranta V., Pozzi A., Arteaga C. L. (2009). Transforming Growth Factor β Induces Clustering of HER2 and Integrins by Activating Src-Focal Adhesion Kinase and Receptor Association to the Cytoskeleton. Cancer Res. 69, 475–482. 10.1158/0008-5472.CAN-08-2649
    1. Wang T., Wang D., Zhang L., Yang P., Wang J., Liu Q., et al. (2019). The TGFβ-miR-499a-SHKBP1 Pathway Induces Resistance to EGFR Inhibitors in Osteosarcoma Cancer Stem Cell-like Cells. J. Exp. Clin. Cancer Res. 38, 226. 10.1186/s13046-019-1195-y
    1. Warmflash A., Zhang Q., Sorre B., Vonica A., Siggia E. D., Brivanlou A. H. (2012). Dynamics of TGF- Signaling Reveal Adaptive and Pulsatile Behaviors Reflected in the Nuclear Localization of Transcription Factor Smad4. Proc. Natl. Acad. Sci. 109, E1947–E1956. 10.1073/pnas.1207607109
    1. Wegner K., Bachmann A., Schad J.-U., Lucarelli P., Sahle S., Nickel P., et al. (2012). Dynamics and Feedback Loops in the Transforming Growth Factor β Signaling Pathway. Biophysical Chem. 162, 22–34. 10.1016/j.bpc.2011.12.003
    1. Wu X., Zhao J., Ruan Y., Sun L., Xu C., Jiang H. (2018). Sialyltransferase ST3GAL1 Promotes Cell Migration, Invasion, and TGF-Β1-Induced EMT and Confers Paclitaxel Resistance in Ovarian Cancer. Cel Death Dis 9, 1102. 10.1038/s41419-018-1101-0
    1. Xian G., Zhao J., Qin C., Zhang Z., Lin Y., Su Z. (2017). Simvastatin Attenuates Macrophage-Mediated Gemcitabine Resistance of Pancreatic Ductal Adenocarcinoma by Regulating the TGF-β1/Gfi-1 axis. Cancer Lett. 385, 65–74. 10.1016/j.canlet.2016.11.006
    1. Xu X., Zhang L., He X., Zhang P., Sun C., Xu X., et al. (2018). TGF-β Plays a Vital Role in Triple-Negative Breast Cancer (TNBC) Drug-Resistance through Regulating Stemness, EMT and Apoptosis. Biochem. biophysical Res. Commun. 502, 160–165. 10.1016/j.bbrc.2018.05.139
    1. Yang L., Pang Y., Moses H. L. (2010). TGF-β and Immune Cells: an Important Regulatory axis in the Tumor Microenvironment and Progression. Trends Immunology 31, 220–227. 10.1016/j.it.2010.04.002
    1. Yao Z., Fenoglio S., Gao D. C., Camiolo M., Stiles B., Lindsted T., et al. (2010). TGF- IL-6 axis Mediates Selective and Adaptive Mechanisms of Resistance to Molecular Targeted Therapy in Lung Cancer. Proc. Natl. Acad. Sci. 107, 15535–15540. 10.1073/pnas.1009472107
    1. Yu Y., Luo W., Yang Z.-J., Chi J.-R., Li Y.-R., Ding Y., et al. (2018). miR-190 Suppresses Breast Cancer Metastasis by Regulation of TGF-β-Induced Epithelial-Mesenchymal Transition. Mol. Cancer 17, 70. 10.1186/s12943-018-0818-9
    1. Zhang B., Li Y., Wu Q., Xie L., Barwick B., et al. (2021). Acetylation of KLF5 Maintains EMT and Tumorigenicity to Cause Chemoresistant Bone Metastasis in Prostate Cancer. Nat. Commun. 12, 1714. 10.1038/s41467-021-21976-w
    1. Zhang B., Zhang B., Chen X., Bae S., Singh K., Washington M. K., et al. (2014). Loss of Smad4 in Colorectal Cancer Induces Resistance to 5-fluorouracil through Activating Akt Pathway. Br. J. Cancer 110, 946–957. 10.1038/bjc.2013.789
    1. Zhang F., Wang H., Wang X., Jiang G., Liu H., Zhang G., et al. (2016). TGF-β Induces M2-like Macrophage Polarization via SNAIL-Mediated Suppression of a Pro-inflammatory Phenotype. Oncotarget 7, 52294–52306. 10.18632/oncotarget.10561
    1. Zhang J., Ten Dijke P., Wuhrer M., Zhang T. (1007) Role of Glycosylation in TGF-β Signaling and Epithelial-To-Mesenchymal Transition in Cancer. Protein Cell 12 , 89–106. 10.1007/s13238-020-00741-7
    1. Zhang Q., Xiao M., Gu S., Xu Y., Liu T., Li H., et al. (2019). ALK Phosphorylates SMAD4 on Tyrosine to Disable TGF-β Tumour Suppressor Functions. Nat. Cel Biol 21, 179–189. 10.1038/s41556-018-0264-3
    1. Zhang Y., Zeng Y., Liu T., Du W., Zhu J., Liu Z., et al. (2019). The Canonical TGF-β/Smad Signalling Pathway Is Involved in PD-L1-Induced Primary Resistance to EGFR-TKIs in EGFR-Mutant Non-small-cell Lung Cancer. Respir. Res. 20, 164. 10.1186/s12931-019-1137-4
    1. Zhao P., Ma Y.-g., Zhao Y., Liu D., Dai Z.-j., Yan C.-y., et al. (2019). MicroRNA-552 Deficiency Mediates 5-fluorouracil Resistance by Targeting SMAD2 Signaling in DNA-Mismatch-Repair-Deficient Colorectal Cancer. Cancer Chemother. Pharmacol. 84, 427–439. 10.1007/s00280-019-03866-7
    1. Zheng X., Carstens J. L., Kim J., Scheible M., Kaye J., Sugimoto H., et al. (2015). Epithelial-to-mesenchymal Transition Is Dispensable for Metastasis but Induces Chemoresistance in Pancreatic Cancer. Nature 527, 525–530. 10.1038/nature16064
    1. Zhong J., Li L., Wang Z., Bai H., Gai F., Duan J., et al. (2017). Potential Resistance Mechanisms Revealed by Targeted Sequencing from Lung Adenocarcinoma Patients with Primary Resistance to Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors (TKIs). J. Thorac. Oncol. 12, 1766–1778. 10.1016/j.jtho.2017.07.032
    1. Zhou X., Men X., Zhao R., Han J., Fan Z., Wang Y., et al. (2018). miR-200c Inhibits TGF-β-Induced-EMT to Restore Trastuzumab Sensitivity by Targeting ZEB1 and ZEB2 in Gastric Cancer. Cancer Gene Ther. 25, 68–76. 10.1038/s41417-017-0005-y
    1. Zhu Q. L., Li Z., Lv C. M., Wang W. (2019). MiR-187 Influences Cisplatin-Resistance of Gastric Cancer Cells through Regulating the TGF-β/Smad Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 23, 9907–9914. 10.26355/eurrev_201911_19556
    1. Zhuang J., Shen L., Yang L., Huang X., Lu Q., Cui Y., et al. (2017). TGFβ1 Promotes Gemcitabine Resistance through Regulating the LncRNA-LET/NF90/miR-145 Signaling Axis in Bladder Cancer. Theranostics 7, 3053–3067. 10.7150/thno.19542
    1. Zhuang X., Wang J. (2018). Correlations of MRP1 Gene with Serum TGF-Β1 and IL-8 in Breast Cancer Patients during Chemotherapy. J. BUON 23, 1302–1308.
    1. Zi Z., Feng Z., Chapnick D. A., Dahl M., Deng D., Klipp E., et al. (2011). Quantitative Analysis of Transient and Sustained Transforming Growth Factor‐β Signaling Dynamics. Mol. Syst. Biol. 7, 492. 10.1038/msb.2011.22

Source: PubMed

3
Subscribe