Exercise, Immune System, Nutrition, Respiratory and Cardiovascular Diseases during COVID-19: A Complex Combination

Olga Scudiero, Barbara Lombardo, Mariarita Brancaccio, Cristina Mennitti, Arturo Cesaro, Fabio Fimiani, Luca Gentile, Elisabetta Moscarella, Federica Amodio, Annaluisa Ranieri, Felice Gragnano, Sonia Laneri, Cristina Mazzaccara, Pierpaolo Di Micco, Martina Caiazza, Giovanni D'Alicandro, Giuseppe Limongelli, Paolo Calabrò, Raffaela Pero, Giulia Frisso, Olga Scudiero, Barbara Lombardo, Mariarita Brancaccio, Cristina Mennitti, Arturo Cesaro, Fabio Fimiani, Luca Gentile, Elisabetta Moscarella, Federica Amodio, Annaluisa Ranieri, Felice Gragnano, Sonia Laneri, Cristina Mazzaccara, Pierpaolo Di Micco, Martina Caiazza, Giovanni D'Alicandro, Giuseppe Limongelli, Paolo Calabrò, Raffaela Pero, Giulia Frisso

Abstract

Coronaviruses (CoVs) represent a large family of RNA viruses that can infect different living species, posing a global threat to human health. CoVs can evade the immune response, replicate within the host, and cause a rapid immune compromise culminating in severe acute respiratory syndrome. In humans, the immune system functions are influenced by physical activity, nutrition, and the absence of respiratory or cardiovascular diseases. This review provides an in-depth study between the interactions of the immune system and coronaviruses in the host to defend against CoVs disease.

Keywords: cardiovascular disorders; coronavirus; immune system; nutrition; physical exercise; respiratory infection.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Morphological organization of the coronavirus.
Figure 2
Figure 2
Symptoms of coronavirus.
Figure 3
Figure 3
The immune system of athletes.
Figure 4
Figure 4
Proper nutrition.
Figure 5
Figure 5
Protocols for return-to-play for the athletes.
Figure 6
Figure 6
Diagnostic methods in use for the identification of COVID-19 infection.

References

    1. Zaki A.M., van Boheemen S., Bestebroer M.T., Osterhaus A.D.M.E., Fouchier R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012;367:1814–1820. doi: 10.1056/NEJMoa1211721.
    1. World Health Organization Laboratory Testing of Human Suspected Cases of Novel Coronavirus (nCoV) Infection. [(accessed on 10 January 2020)]; Available online: .
    1. World Health Organization Novel Coronavirus (2019-nCoV) Situation Report-2. [(accessed on 22 January 2020)]; Available online: .
    1. World Health Organization Middle East Respiratory Syndrome Coronavirus (MERS-CoV) [(accessed on 19 January 2020)]; Available online: .
    1. World Health Organization WHO MERS Global Summary and Assessment of Risk. [(accessed on 19 July 2019)]; Available online: .
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Hui D.S., Azhar E.I., Madani T.A., Ntoumi F., Kock R., Dar O., Ippolito G., Mchugh T.D., Memish Z.A., Drosten C., et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020;91:264–266. doi: 10.1016/j.ijid.2020.01.009.
    1. Rodriguez-Morales A.J., Bonilla-Aldana D.K., Balbin-Ramon G.J., Rabaan A.A., Sah R., Paniz-Mondolfi A., Pagliano P., Esposito S. History is repeating itself: Probable zoonotic spillover as the cause of the 2019 novel Coronavirus Epidemic. Infez. Med. 2020;28:3–5.
    1. Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433.
    1. Li G., Fan Y., Lai Y., Han T., Li Z., Zhou P., Pan P., Wang W., Hu D., Liu X., et al. Coronavirus infections and immune responses. J. Med. Virol. 2020;92:424–432. doi: 10.1002/jmv.25685.
    1. Scudiero O., Brancaccio M., Mennitti C., Laneri S., Lombardo B., De Biasi M.G., De Gregorio E., Pagliuca C., Colicchio R., Salvatore P., et al. Human Defensins: A Novel Approach in the Fight against Skin Colonizing Staphylococcus aureus. Antibiotics. 2020;9:198. doi: 10.3390/antibiotics9040198.
    1. Nicholson L.B. The immune system. Essays Biochem. 2016;60:275–301. doi: 10.1042/EBC20160017.
    1. Kumar H., Kawai T., Akira S. Pathogen Recognition by the Innate Immune System. Int. Rev. Immunol. 2011;30:16–34. doi: 10.3109/08830185.2010.529976.
    1. Uthaisangsook S., Day N.K., Bahna S.L., Good R.A., Haraguchi S. Innate immunity and its role against infections. Ann. Allergy Asthma Immunol. 2002;88:253–264. doi: 10.1016/S1081-1206(10)62005-4.
    1. Pero R., Angrisano T., Brancaccio M., Falanga A., Lombardi L., Natale F., Laneri S., Lombardo B., Galdiero S., Scudiero O. Beta-defensins and analogs in Helicobacter pylori infections: mRNA expression levels, DNA methylation, and antibacterial activity. PLoS ONE. 2019;14:e0222295. doi: 10.1371/journal.pone.0222295.
    1. Pero R., Brancaccio M., Laneri S., De Biasi M.G., Lombardo B., Scudiero O. A Novel View of Human Helicobacter pylori Infections: Interplay between Microbiota and Beta-Defensins. Biomolecules. 2019;9:237. doi: 10.3390/biom9060237.
    1. Pero R., Coretti L., Nigro E., Lembo F., Laneri S., Lombardo B., Daniele A., Scudiero O. β-Defensins in the Fight against Helicobacter pylori. Molecules. 2017;22:424. doi: 10.3390/molecules22030424.
    1. Colavita I., Nigro E., Sarnataro D., Scudiero O., Granata V., Daniele A., Zagari A., Pessi A., Salvatore F. Membrane protein 4F2/CD98 is a cell surface receptor involved in the internalization and trafficking of human β-Defensin 3 in epithelial cells. Chem. Biol. 2015;22:217–228. doi: 10.1016/j.chembiol.2014.11.020.
    1. Falanga A., Nigro E., De Biasi M.G., Daniele A., Morelli G., Galdiero S., Scudiero O. Cyclic Peptides as Novel Therapeutic Microbicides: Engineering of Human Defensin Mimetics. Molecules. 2017;20:1217. doi: 10.3390/molecules22071217.
    1. Scudiero O., Nigro E., Cantisani M., Colavita I., Leone M., Mercurio F.A., Galdiero M., Pessi A., Daniele A., Salvatore F., et al. Design and activity of a cyclic mini-β-defensin analog: A novel antimicrobial tool. Int. J. Nanomed. 2015;10:6523–6539.
    1. Falanga A., Valiante S., Galdiero E., Franci G., Scudiero O., Morelli G., Galdiero S. Dimerization in tailoring uptake efficacy of the HSV-1 derived membranotropic peptide gH625. Sci. Rep. 2017;7:9434. doi: 10.1038/s41598-017-09001-x.
    1. Daher K.A., Selsted M.E., Lehrer R.I. Direct inactivation of viruses by human granulocyte defensins. J. Virol. 1986;60:1068–1074. doi: 10.1128/JVI.60.3.1068-1074.1986.
    1. Wilson S.S., Wiens M.E., Smith J.G. Antiviral Mechanisms of Human Defensins. J. Mol. Biol. 2013;425:4965–4980. doi: 10.1016/j.jmb.2013.09.038.
    1. Chan J.F., Lau S.K., To K.K., Cheng V.C., Woo P.C., Yuen K.Y. Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev. 2015;28:465–522. doi: 10.1128/CMR.00102-14.
    1. Manni M.L., Robinson K.M., Alcorn J.F. A tale of two cytokines: IL-17 and IL-22 in asthma and infection. Expert Rev. Respir. Med. 2014;8:25–42. doi: 10.1586/17476348.2014.854167.
    1. Lucas C., Wong P., Klein J., Castro T.B.R., Silva J., Sundaram M., Ellingson M.K., Mao T., Oh J.E. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584:463–469. doi: 10.1038/s41586-020-2588-y.
    1. Pero R., Brancaccio M., Mennitti C., Gentile L., Franco A., Laneri S., De Biasi M.G., Pagliuca C., Colicchio R., Salvatore P., et al. HNP-1 and HBD-1 as Biomarkers for the Immune Systems of Elite Basketball Athletes. Antibiotics. 2020;9:306. doi: 10.3390/antibiotics9060306.
    1. Brancaccio M., Mennitti C., Laneri S., Franco A., De Biasi M.G., Cesaro A., Fimiani F., Moscarella E., Gragnano F., Mazzaccara C., et al. Methicillin-Resistant Staphylococcus aureus: Risk for General Infection and Endocarditis Among Athletes. Antibiotics. 2020;9:332. doi: 10.3390/antibiotics9060332.
    1. Mennitti C., Brancaccio M., Gentile L., Ranieri A., Terracciano D., Cennamo M., La Civita E., Liotti A., D’Alicandro G., Mazzaccara C., et al. Athlete’s Passport: Prevention of Infections, Inflammations, Injuries and Cardiovascular Diseases. J. Clin. Med. 2020;9:2540. doi: 10.3390/jcm9082540.
    1. Pero R., Brancaccio M., Mennitti C., Gentile L., Arpino S., De Falco R., Leggiero E., Ranieri A., Pagliuca C., Colicchio R., et al. Urinary Biomarkers: Diagnostic Tools for Monitoring Athletes’ Health Status. Int. J. Environ. Res. Public Health. 2020;17:6065. doi: 10.3390/ijerph17176065.
    1. Simpson R.J., Kunz H., Agha N., Graff R. Chapter Fifteen—Exercise and the Regulation of Immune Functions. Prog. Mol. Biol. Transl. Sci. 2015;135:355–380.
    1. Nieman D.C., Pedersen B.K. Exercise and immune function. Recent Dev. 1999;27:73–80. doi: 10.2165/00007256-199927020-00001.
    1. Kakanis M.W., Peake J., Brenu E.W., Simmonds M., Gray B., Hooper S.L., Marshall-Gradisnik S.M. The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc. Immunol. Rev. 2010;16:119–137. doi: 10.1016/j.jsams.2010.10.642.
    1. Dhabhar F.S. Stress-induced augmentation of immune function-The role of stress hormones, leukocyte trafficking, and cytokines. Brain Behav. Immun. 2002;16:785–798. doi: 10.1016/S0889-1591(02)00036-3.
    1. Ostrowski K., Rohde T., Asp S., Schjerling P., Pedersen B.K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J. Physiol. 1999;515:287–291. doi: 10.1111/j.1469-7793.1999.287ad.x.
    1. Schouten W., Verschuur R., Kemper H.C.G. Habitual Physical Activity, Strenuous Exercise, and Salivary Immunoglobulin A Levels in Young Adults: The Amsterdam Growth and Health Study. Int. J. Sports Med. 1988;4:289–293. doi: 10.1055/s-2007-1025024.
    1. Trochimiak T., Hübner-Woźniak E. Effect of Exercise on the Level of Immunoglobulin A in Saliva. Biol. Sport. 2012;4:255–261. doi: 10.5604/20831862.1019662.
    1. Wang L.M., Qiao X.L., Ai L., Zhai J.J., Wang X.X. Isolation of antimicrobial resistant bacteria in upper respiratory tract infections of patients. 3 Biotech. 2016;6:166. doi: 10.1007/s13205-016-0473-z.
    1. Nieman D.C. Exercise, infection and immunity. Int. J. Sports Med. 1994;15:S131–S141. doi: 10.1055/s-2007-1021128.
    1. Schwellnus M., Soligard T., Alonso J.M., Bahr R., Clarsen B., Dijkstra H.P., Gabbett T.J., Gleeson M., Hägglund M., Hutchinson M.R., et al. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br. J. Sports Med. 2016;50:1043–1052. doi: 10.1136/bjsports-2016-096572.
    1. Mårtensson S., Nordebo K., Malm C. High training volumes are associated with a low number of self-reported sick days in elite endurance athletes. J. Sports Sci. Med. 2014;13:929–933.
    1. Brancaccio M., D’Argenio G., Lembo V., Palumbo A., Castellano I. Antifibrotic Effect of Marine Ovothiol in an In Vivo Model of Liver Fibrosis. Oxidative Med. Cell. Longev. 2018;2018:5045734. doi: 10.1155/2018/5045734.
    1. Brancaccio M., Russo M., Masullo M., Palumbo A., Russo G.L., Castellano I. Sulfur-containing histidine compounds inhibit gamma-glutamyl transpeptidase activity in human cancer cells. J. Biol. Chem. 2019;294:14603–14614. doi: 10.1074/jbc.RA119.009304.
    1. Brancaccio M., Mennitti C., Cesaro A., Fimiani F., Moscarella E., Caiazza M., Gragnano F., Ranieri A., D’Alicandro G., Tinto N., et al. Dietary Thiols: A Potential Supporting Strategy against Oxidative Stress in Heart Failure and Muscular Damage during Sports Activity. Int. J. Environ. Res. Public Health. 2020;17:9424. doi: 10.3390/ijerph17249424.
    1. Guloyan V., Oganesian B., Baghdasaryan N., Yeh C., Singh M., Guilford F., Ting S.T., Venketaraman V. Glutathione Supplementation as an Adjunctive Therapy in COVID-19. Antioxidants. 2020;10:914. doi: 10.3390/antiox9100914.
    1. Fortmann S.P., Burda B.U., Senger C.A., Lin J.S., Whitlock E.P. Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: An updated systematic evidence review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2013;159:824–834. doi: 10.7326/0003-4819-159-12-201312170-00729.
    1. Lakhan S.E., Vieira K.F. Nutritional therapies for mental disorders. Nutr. J. 2008;7:2. doi: 10.1186/1475-2891-7-2.
    1. Murdaca G., Pioggia G., Negrini S. Vitamin D and Covid-19: An update on evidence and potential therapeutic implications. Clin. Mol. Allergy. 2020;18:23. doi: 10.1186/s12948-020-00139-0.
    1. Shakoor H., Feehan H.S.J., Al Dhaheri A.S., Ali H.I., Platat C., Ismail C.L., Apostolopoulos V., Stojanovska L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas. 2021;143:1–9. doi: 10.1016/j.maturitas.2020.08.003.
    1. Hunt C., Chakravorty N., Annan G., Habibzadeh N., Schorah C. The clinical effects of vitamin C supplementation in elderly hospitalised patients with acute respiratory infections. Int. J. Vitam. Nutr. Res. 1994;64:212–219.
    1. Hiedra R., Lo K.B., Elbashabsheh M., Gul F., Wright R.M., Albano J., Azmaiprashvili Z., Patarroyo Aponte G. The use of IV vitamin C for patients with COVID-19: A case series. Expert Rev. Anti-Infect. Ther. 2020;12:1259–1261. doi: 10.1080/14787210.2020.1794819.
    1. Coretti L., Natale A., Cuomo M., Florio E., Keller S., Lembo F., Chiariotti L., Pero R. The Interplay between Defensins and Microbiota in Crohn’s Disease. Mediat. Inflamm. 2017;2017:8392523. doi: 10.1155/2017/8392523.
    1. Angrisano T., Pero R., Brancaccio M., Coretti L., Florio E., Pezone A., Calabrò V., Falco G., Keller S., Lembo F., et al. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells. PLoS ONE. 2016;11:e0156671. doi: 10.1371/journal.pone.0156671.
    1. Chiariotti L., Coretti L., Pero R., Lembo F. Epigenetic Alterations Induced by Bacterial Lipopolysaccharides. Adv. Exp. Med. Biol. 2016;879:91–105.
    1. Nieman D.C. Exercise immunology: Future directions for research related to athletes, nutrition, and the elderly. Int. J. Sports Med. 2000;1:S61–S68. doi: 10.1055/s-2000-1453.
    1. Dini I., Laneri S. Nutricosmetics: A brief overview. Phytother. Res. 2019;33:3054–3063. doi: 10.1002/ptr.6494.
    1. Spence L., Brown W.J., Pyne D.B., Nissen M.D., Sloots T.P., McCormack J.G., Locke A.S., Fricker P.A. Incidence, etiology, and symptomatology of upper respiratory illness in elite athletes. Med. Sci. Sports Exerc. 2007;39:577–586. doi: 10.1249/mss.0b013e31802e851a.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017.
    1. Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S.Y. Pulmonary pathology of early phase 2019novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 2020;15:700–704. doi: 10.1016/j.jtho.2020.02.010.
    1. Liu K., Fang Y.Y., Deng Y., Liu W., Wang M.F., Ma J.P., Xiao W., Wang Y.N., Zhong M.H., Li C.H., et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. 2020;133:1025–1031. doi: 10.1097/CM9.0000000000000744.
    1. Walsh N.P., Gleeson M., Shephard R.J., Gleeson M., Woods J.A., Bishop N.C., Fleshner M., Green C., Pedersen B.K., Hoffman-Goetz L., et al. Position statement. Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011;17:6–63.
    1. Shaw D.M., Merien F., Braakhuis A., Dulson D. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine. 2017;104:136–142. doi: 10.1016/j.cyto.2017.10.001.
    1. Cox A.J., Pyne D.B., Saunders P.U., Callister R., Gleeson M. Cytokine responses to treadmill running in healthy and illness prone athletes. Med. Sci. Sports Exerc. 2007;39:1918–1926. doi: 10.1249/mss.0b013e318149f2aa.
    1. Cox A.J., Gleeson M., Pyne D.B., Callister R., Fricker P.A., Scott R.J. Cytokine gene polymorphisms and risk for upper respiratory symptoms in highly-trained athletes. Exerc. Immunol. Rev. 2010;16:8–21.
    1. Zehsaz F., Farhangi N., Monfaredan A., Tabatabaei Seyed M. IL-10 G-1082A gene polymorphism and susceptibility to upper respiratory tract infection among endurance athletes. J. Sports Med. Phys. Fitness. 2015;55:128–134.
    1. Vollmer-Conna U., Piraino B.F., Cameron B., Davenport T., Hickie I., Wakefield D., Lloyd A.R. Cytokine polymorphisms have a synergistic effect on severity of the acute sickness response to infection. Clin. Infect. Dis. 2008;47:1418–1425. doi: 10.1086/592967.
    1. Hull J.H., Loosemore M., Schwellnus M. Respiratory health in athletes: Facing the COVID-19 challenge. Lancet Respir. Med. 2020;8:557–558. doi: 10.1016/S2213-2600(20)30175-2.
    1. Driggin E., Madhavan M.V., Bikdeli B., Chuich T., Laracy J., Bondi-Zoccai G., Brown T.S., Der Nigoghossian C., Zidar D.A., Haythe J., et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the Coronavirus Disease 2019 (COVID-19) Pandemic. J. Am. Coll. Cardiol. 2020;75:2352–2371. doi: 10.1016/j.jacc.2020.03.031.
    1. Nishiga M., Wang D.W., Han Y., Lewis D.B., Wu J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020;17:543–558. doi: 10.1038/s41569-020-0413-9.
    1. Davalgi S., Undi M., Annadani R., Nawaz A.S. Comparison of Measures adopted to combat COVID 19 Pandemic by different countries in WHO regions. Indian J. Community Health. 2020;32:288–299.
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–848. doi: 10.1007/s00134-020-05991-x.
    1. Long B., Brady W.J., Koyfman A., Gottlieb M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 2020;38:1504–1507. doi: 10.1016/j.ajem.2020.04.048.
    1. Libby P. The Heart in COVID-19: Primary Target or Secondary Bystander? JACC Basic Transl. Sci. 2020;ì5:537–542. doi: 10.1016/j.jacbts.2020.04.001.
    1. Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F., Gong W., Liu X., Liang J., Zhao Q., et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5:802–810. doi: 10.1001/jamacardio.2020.0950.
    1. Guo T., Fan Y., Chen M., Wu X., Zhang L., He T., Wang H., Wan J., Wang X., Lu Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19) JAMA Cardiol. 2020;5:811–818. doi: 10.1001/jamacardio.2020.1017.
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585.
    1. Li B., Yang J., Zhao F., Zhi L., Wang X., Liu L., Bi Z., Zhao Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020 doi: 10.1007/s00392-020-01626-9.
    1. Scudiero O., Gentile L., Ranieri A., Coppola E., Di Micco P., Mazzaccara C., D’alicandro G., Leggiero E., Frisso G., Pastore L., et al. Physical Activity and Thrombophilic Risk in a Short Series. J. Blood Med. 2020;11:39–42. doi: 10.2147/JBM.S220566.
    1. Toresdahl B.G., Asif I.M. Coronavirus Disease 2019 (COVID-19): Considerations for the Competitive Athlete. Sport Health A Multidiscip. Approach. 2020;12:221–224. doi: 10.1177/1941738120918876.
    1. Parnell D., Widdop P., Bond A., Wilson R. COVID-19, networks and sport. Manag. Sport Leis. 2020;2020:1–7. doi: 10.1080/23750472.2020.1750100.
    1. Grabowski G., Whiteside W.K., Kanwisher M. Venous thrombosis in athletes. J. Am. Acad. Orthop. Surg. 2013;21:108–117. doi: 10.5435/JAAOS-21-02-108.
    1. Hoch A.Z., Lal S., Jurva J.W., Gutterman D.D. The female athlete triad and cardiovascular dysfunction. Phys. Med. Rehabil. Clin. N. Am. 2007;18:385. doi: 10.1016/j.pmr.2007.05.001.
    1. Zadow E.K., Adams M.J., Kitic C.M., Wu S.S.X., Fell J.W. Acquired and Genetic Thrombotic Risk Factors in the Athlete. Semin. Thromb. Hemost. 2018;44:723–733.
    1. Řádek M., Babuňková E., Špaček M., Kvasnička T., Kvasnička J. Determination of Circulating Endothelial Cells and Endothelial Progenitor Cells Using Multicolor Flow Cytometry in Patients with Thrombophilia. Acta Haematol. 2019;142:113–119. doi: 10.1159/000499524.
    1. Hilberg T., Jeschke D., Gabriel H.H. Hereditary thrombophilia in elite athletes. Med. Sci. Sports Exerc. 2002;34:218–221. doi: 10.1097/00005768-200202000-00006.
    1. Martin D., Sale C., Cooper S.B., Elliott-Sale K.J. Period Prevalence and Perceived Side Effects of Hormonal Contraceptive Use and the Menstrual Cycle in Elite Athletes. Int. J. Sports Physiol. Perform. 2018;13:926–932. doi: 10.1123/ijspp.2017-0330.
    1. Chen P., Mao L., Nassis G.P., Harmer P., Ainsworth B.E., Li F. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J. Sport Health Sci. 2020;9:103–104. doi: 10.1016/j.jshs.2020.02.001.
    1. Handelsman D.J., Hirschberg A.L., Bermon S. Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocr. Rev. 2018;39:803–829. doi: 10.1210/er.2018-00020.
    1. Freedman J., Glueck C.J., Prince M., Riaz R., Wang P. Testosterone, thrombophilia, thrombosis. Transl. Res. 2015;165:537–548. doi: 10.1016/j.trsl.2014.12.003.
    1. Ranieri A., Benetti E., Tita R., Spiga O., Ciolfi A., Birolo G., Bruselles A., Doddato G., Giliberti A., Marcomni C., et al. ACE2 variants underlie inter-individual variability and susceptibility to COVID-19 in Italian population. medRxiv. 2020 doi: 10.1101/2020.04.03.20047977.
    1. Russo R., Andolfo I., Lasorsa V.A., Iolascon A., Capasso M. Genetic analysis of the novel SARS-CoV-2 host receptor TMPRSS2 in different populations. bioRxiv. 2020 doi: 10.1101/2020.04.23.057190.
    1. Laneri S., Di Ronza C., Bernardi A., Ostacolo C., Sacchi A., Cervone C., D’Amico M., Di Filippo C., Trincavelli M.L., Panighini A., et al. Synthesis and Antihypertensive Action of New Imidazo [1,2-a] pyridine Derivatives, non Peptidic Angiotensin II Receptor Antagonists. Cardiovasc. Haematol. Disord. -Drug Targets. 2011;11:87–96. doi: 10.2174/187152911798347016.
    1. Zheng H., Cao J.J. Angiotensin-Converting Enzyme Gene Polymorphism and Severe Lung Injury in Patients with Coronavirus Disease 2019. Am. J. Pathol. 2020;190:2013–2017. doi: 10.1016/j.ajpath.2020.07.009.
    1. Delanghe J.R., Speeckaert M.M., De Buyzere M.L. The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clin. Chim. Acta. 2020;505:192–193. doi: 10.1016/j.cca.2020.03.031.
    1. Delanghe J.R., Speeckaert M.M., Marc L. COVID-19 infections are also affected by human ACE1 D/I polymorphism. Clin. Chem. Lab Med. 2020 doi: 10.1515/cclm-2020-0425.
    1. Nguyen A., Davide J.K., Maden S.K., Wood M.A., Weeder B.J., Nellore A., Thompson R.T. Human leukocyte antigen susceptibility map for SARS-CoV-2. J. Virol. 2020 doi: 10.1128/JVI.00510-20.
    1. Moreno-Eutimio M.A., Lopez-Macias C., Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020;22:226–229. doi: 10.1016/j.micinf.2020.04.009.
    1. Zhao J., Yang Y., Huang H., Li D., Gu D., Lu X., Zhang Z., Liu L., Liu T., Liu Y., et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. medRxiv. 2020 doi: 10.1101/2020.03.11.20031096.
    1. Eynon N., Ruiz J.R., Oliveira J., Duarte J.A., Birk R., Lucia A. Genes and elite athletes: A roadmap for future research. Pt 13J. Physiol. 2011;589:3063–3307. doi: 10.1113/jphysiol.2011.207035.
    1. Ahmetov I.I., Fedotovskaya O.N. Current Progress in Sports Genomics. Adv. Clin. Chem. 2015;70:247–314.
    1. Zheng Q., Cui G., Chen J., Gao H., Wei Y., Uede T., Chen Z., Diao H. Regular Exercise Enhances the Immune Response Against Microbial Antigens Through Up-Regulation of Toll-like Receptor Signaling Pathways. Cell Physiol. Biochem. 2015;37:735–746. doi: 10.1159/000430391.
    1. Gleeson M., Mc Farlin B., Flynn M. Exercise and Toll-like receptors. Exerc. Immunol. Rev. 2006;12:34–53.
    1. Lippi G., Gandini G., Salvagno G.L., Skafidas S., Festa L., Danese E., Montagnana M., Sanchis-Gomar F., Tarperi C., Schena F. Influence of ABO blood group on sports performance. Ann. Transl. Med. 2017;5:255. doi: 10.21037/atm.2017.04.33.
    1. Wong A.Y.-Y., Lin S.K.-K., Louie L.H.-T., Law G.Y.-K., So R.C.-H., Lee D.C.-W., Yau F.C.-F., Yung S.-H. Impact of the COVID-19 pandemic on sports and exercise. Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2020;22:39–44. doi: 10.1016/j.asmart.2020.07.006.
    1. BBC Sport Coronavirus: How the Virus has Impacted Sporting Events around the World. [(accessed on 12 June 2020)];2020 Available online: .
    1. Samuel D.R., Tenenbaum G., Galily Y. The 2020 Coronavirus Pandemic as a Change-Evet in Sport Performers’ Careers: Conceptual and Applied Practice Considerations. Front. Psychol. 2020;11:56796. doi: 10.3389/fpsyg.2020.567966.
    1. Pillay L., van Rensburg D.C.C.J., van Rensburg A.J., Ramagole D.A., Holtzhausen L., Dijkstra H.P., Cronje T. Nowhere to hide: The significant impact of coronavirus disease 2019 (COVID-19) measures on elite and semi-elite South African athletes. J. Sci. Med. Sport. 2020;23:670–679. doi: 10.1016/j.jsams.2020.05.016.
    1. Rajpal S., Tong M.S., Borchers J., Zareba K.M., Obarski T.P., Simonetti O.P., Daniels C.J. Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering From COVID-19 Infection. JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.4916.
    1. Verwoert G.C., de Vries S.T., Bijsterveld N., Willems A.R., vd Borgh R., Jongman J.K., Kemps H.M., Snoek J.A., Rienks R., Jorstad H.T. Return to sports after COVID-19: A position paper from the Dutch Sports Cardiology Section of the Netherlands Society of Cardiology. Neth. Heart J. 2020;28:391–395. doi: 10.1007/s12471-020-01469-z.
    1. Shaukat N., Ali D.M., Razzak J. Physical and mental health impacts of COVID-19 on healthcare workers: A scoping review. Int. J. Emerg. Med. 2020;13:40. doi: 10.1186/s12245-020-00299-5.
    1. Troosters T. Managing the Respiratory Care of Patients with COVID-19: Italian Recommendations. European Respiratory Society; Lausanne, Switzerland: 2020.
    1. Balbi B., Berney S., Brooks D. Report of an Ad-Hoc International Task Force to Develop an Expert-Based Opinion on Early and Short-Term Rehabilitative Interventions. European Respiratory Society; Lausanne, Switzerland: 2020.
    1. Boldrini P., Bernetti A., Fiore P. SIMFER Executive Committee and SIMFER Committee for international affairs. Impact of COVID-19 outbreak on rehabilitation services and Physical and Rehabilitation Medicine (PRM) physicians’ activities in Italy. Eur. J. Phys. Rehabil. Med. 2020;10:S1973-9087.
    1. Ragozzino E., Brancaccio M., Di Costanzo A., Scalabri F., Andolfi G., Wanderlingh L.G., Patriarca E.J., Minchiotti G., Altamura S., Varrone F., et al. 6-Bromoindirubin- 3’-oxime intercepts GSK3 signaling to promote and enhance skeletal muscle differentiation affecting miR-206 expression in mice. Sci. Rep. 2019;9:18091. doi: 10.1038/s41598-019-54574-4.
    1. Gaspersz R., Lamers F., Wittenberg G., Beekman A.T., van Hemert A.M., Schoevers R.A., Penninx B.W. The role of anxious distress in immune dysregulation in patients with major depressive disorder. Transl. Psychiatry. 2017;7:1268. doi: 10.1038/s41398-017-0016-3.
    1. Hogan C.L., Mata J., Carstensen L.L. Exercise Holds Immediate Benefits for Affect and Cognition in Younger and Older Adults. Psychol. Aging. 2013;28:587–594. doi: 10.1037/a0032634.
    1. Asmundson G.J.G., Fetzner M.G., DeBoer L.B., Powers M.B., Otto M.W., Smits J.A.J. Let’s Get Physical: A Contemporary Review of the Anxiolytic Effects of Exercise for Anxiety and Its Disorders. Depress. Anxiety. 2013;30:362–373. doi: 10.1002/da.22043.
    1. AminJafari A., Ghasemi S. The Possible of Immunotherapy for COVID-19: A Systematic Review. Int. Immunopharmacol. 2020;83:106455. doi: 10.1016/j.intimp.2020.106455.
    1. Schijns V., Lavelle E.D. Prevention and Treatment of COVID-19 Disease by Controlled Modulation of Innate Immunity. Eur. J. Immunol. 2020;50:932–938. doi: 10.1002/eji.202048693.
    1. Zhang L., Liu Y. Potential Interventions for Novel Coronavirus in China: A Systematic Review. J. Med. Virol. 2020;92:479–490. doi: 10.1002/jmv.25707.
    1. Catanzaro M., Fagiani F., Racchi M., Corsini E., Govoni S., Lanni C. Immune Response in COVID-19: Addressing a Pharmacological Challenge by Targeting Pathways Triggered by SARS-CoV-2. Signal Transduct. Target. Ther. 2020;5:84. doi: 10.1038/s41392-020-0191-1.
    1. Wu D., Lewis E.D., Pae M., Meydani S.N. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Front. Immunol. 2018;9:3160. doi: 10.3389/fimmu.2018.03160.

Source: PubMed

3
Subscribe