Oxidative stress: a concept in redox biology and medicine

Helmut Sies, Helmut Sies

Abstract

"Oxidative stress" as a concept in redox biology and medicine has been formulated in 1985; at the beginning of 2015, approx. 138,000 PubMed entries show for this term. This concept has its merits and its pitfalls. Among the merits is the notion, elicited by the combined two terms of (i) aerobic metabolism as a steady-state redox balance and (ii) the associated potential strains in the balance as denoted by the term, stress, evoking biological stress responses. Current research on molecular redox switches governing oxidative stress responses is in full bloom. The fundamental importance of linking redox shifts to phosphorylation/dephosphorylation signaling is being more fully appreciated, thanks to major advances in methodology. Among the pitfalls is the fact that the underlying molecular details are to be worked out in each particular case, which is bvious for a global concept, but which is sometimes overlooked. This can lead to indiscriminate use of the term, oxidative stress, without clear relation to redox chemistry. The major role in antioxidant defense is fulfilled by antioxidant enzymes, not by small-molecule antioxidant compounds. The field of oxidative stress research embraces chemistry, biochemistry, cell biology, physiology and pathophysiology, all the way to medicine and health and disease research.

Keywords: Adaptive response; Antioxidants; Oxidants; Oxidative stress; Redox balance; Redox signaling.

Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

Figures

Graphical abstract
Graphical abstract

References

    1. Sies H. In: Oxidative Stress. Sies H., editor. Academic Press; London: 1985. Oxidative stress: introductory remarks; pp. 1–8.
    1. H. Sies (Ed.), Oxidative Stress, Academic Press, London, 1985, pp. 1–507.
    1. Sies H. Biochemistry of oxidative stress. Angewandte Chemie International Edition. 1986;25(12):1058–1071. (in German)
    2. Sies H. Biochemie des oxidativen Stress. Angewandte Chemie. 1986;98(12):1061–1075. doi: 10.1002/ange.19860981203.
    1. C.K. Sen, H. Sies, P.A. Baeuerle (Eds.), Antioxidant and Redox Regulation of Genes, Academic Press, London, 2000, pp. 1–562.
    1. C. Gitler, A. Danon (Eds.), Cellular Implications of Redox Signaling, Imperial College Press, London, 2003, pp. 1–427.
    1. Herrmann J.M., Dick T.P. Redox biology on the rise. Biological Chemistry. 2012;393(9):999–1004. doi: 10.1515/hsz-2012-0111.
    1. Sies H., Jones D. In: 2nd ed. Fink G., editor. Vol. 3. Elsevier; Amsterdam: 2007. Oxidative stress; pp. 45–48. (Encyclopedia of Stress).
    1. Jones D.P. Redefining oxidative stress. Antioxidants & Redox Signaling. 2006;8(9–10):1865–1879. doi: 10.1089/ars.2006.8.1865.
    1. Jones D.P. Radical-free biology of oxidative stress. American Journal of Physiology—Cell Physiology. 2008;295(4):C849–C868. doi: 10.1152/ajpcell.00283.2008.
    1. Sies H. In: Oxidative Stress: Oxidants and Antioxidants. Sies H., editor. Academic Press; London: 1991. Oxidative stress: introduction; pp. xv–xxii.
    1. Azzi A., Davies K.J., Kelly F. Free radical biology—terminology and critical thinking. FEBS Letters. 2004;558(1–3):3–6. doi: 10.1016/S0014-5793(03)01526-6.
    1. Levonen A.-L., Hill B.G., Kansanen E., Zhang J., Darley-Usmar V.M. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radical Biology and Medicine. 2014;71:196–207. doi: 10.1016/j.freeradbiomed.2014.03.025.
    1. Sies H. Strategies of antioxidant defense. European Journal of Biochemistry. 1993;215(2):213–219. doi: 10.1111/j.1432-1033.1993.tb18025.x.
    1. Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions. 2014;224C:164–175. doi: 10.1016/j.cbi.2014.10.016.
    1. Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138(3479):32. doi: 10.1038/138032a0.
    1. Selye H. Stress and disease. Science. 1955;122(3171):625–631. doi: 10.1126/science.122.3171.625.
    1. Nathan C., Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nature Reviews Immunology. 2013;13(5):349–361. doi: 10.1038/nri3423.
    1. Pompella A., Sies H., Wacker R., Brouns F., Grune T., Biesalski H.K., Frank J. The use of total antioxidant capacity as surrogate marker for food quality and its effect on health is to be discouraged. Nutrition. 2014;30(7–8):791–793. doi: 10.1016/j.nut.2013.12.002.
    1. Selye H. The general-adaptation-syndrome. Annual Review of Medicine. 1951;2:327–342. doi: 10.1146/annurev.me.02.020151.001551.
    1. Fischer E.H., Krebs E.G. Conversion of phosphorylase-b to phosphorylase-a in muscle extracts. Journal of Biological Chemistry. 1955;216(1):121–132.
    1. Go Y.M., Jones D.P. The redox proteome. Journal of Biological Chemistry. 2013;288(37):26512–26520. doi: 10.1074/jbc.R113.464131.
    1. Cremers C.M., Jakob U. Oxidant sensing by reversible disulfide bond formation. Journal of Biological Chemistry. 2013;288(37):26489–26496. doi: 10.1074/jbc.R113.462929.
    1. Lindemann C., Leichert L.I. Quantitative redox proteomics: the NOxICAT method. Methods in Molecular Biology. 2012;893:387–403. doi: 10.1007/978-1-61779-885-6_24.
    1. Groitl B., Jakob U. Thiol-based redox switches. Biochimica et Biophysica Acta. 2014;1844(8):1335–1343. doi: 10.1016/j.bbapap.2014.03.007.
    1. D’Autréaux B., Toledano M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology. 2007;8(10):813–824. doi: 10.1038/nrm2256.
    1. Zheng M., Aslund F., Storz G. Science. 1998;279(5357):1718–1721. doi: 10.1126/science.279.5357.1718.
    1. Schreck R., Rieber P., Baeuerle P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO Journal. 1991;10(8):2247–2258.
    1. Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I., Yamamoto M., Nabeshima Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and Biophysical Research Communications. 1997;236(2):313–322. doi: 10.1006/bbrc.1997.6943.
    1. Salzano S., Checconi P., Hanschmann E.-, Lillig C.H., Bowler L.D., Chan P., Vaudry D., Mengozzi M., Coppo L., Sacre S., Atkuri K.R., Sahaf B., Herzenberg L.A., Herzenberg L.A., Mullen L., Ghezzi P. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:12157–12162. doi: 10.1073/pnas.1401712111.
    1. Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. Journal of Biological Chemistry. 2014;289(51):35237–35245. doi: 10.1074/jbc.R114.619304.
    1. Voth W., Schick M., Gates S., Li S., Vilardi F., Gostimskaya I., Southworth D.R., Schwappach B., Jakob U. The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions. Molecular Cell. 2014;56(1):116–127. doi: 10.1016/j.molcel.2014.08.017.
    1. Steinbrenner H., Al-Quraishy S., Dkhil M.A., Wunderlich F., Sies H. Dietary selenium in adjuvant therapy of viral and bacterial infections. Advances in Nutrition. 2015;6:73–82.
    1. Watson J.D. Type 2 diabetes as a redox disease. Lancet. 2014;383(9919):841–843. doi: 10.1016/S0140-6736(13)62365-X.
    1. Kaludercic N., Deshwal S., Di Lisa F. Reactive oxygen species and redox compartmentalization. Frontiers in Physiology. 2014;5:285. doi: 10.3389/fphys.2014.00285. [Pubmed: ]
    1. Schmitt F.J., Renger G., Friedrich T., Kreslavski V.D., Zharmukhamedov S.K., Los D.A., Kuznetsov V.V., Allakhverdiev S.I. Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochimica et Biophysica Acta. 2014;1837(6):835–848. doi: 10.1016/j.bbabio.2014.02.005.
    1. Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. Journal of Biological Chemistry. 2014;289(13):8735–8741. doi: 10.1074/jbc.R113.544635.
    1. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiological Reviews. 1979;59(3):527–605.
    1. Jasmin G., Bois P., Selye H. In: Fink G., editor. Vol. 3. Academic Press; London: 2000. pp. 417–418. (Encyclopedia of Stress).

Source: PubMed

3
Subscribe