Radiomics in Stroke Neuroimaging: Techniques, Applications, and Challenges

Qian Chen, Tianyi Xia, Mingyue Zhang, Nengzhi Xia, Jinjin Liu, Yunjun Yang, Qian Chen, Tianyi Xia, Mingyue Zhang, Nengzhi Xia, Jinjin Liu, Yunjun Yang

Abstract

Stroke is a leading cause of disability and mortality worldwide, resulting in substantial economic costs for post-stroke care each year. Neuroimaging, such as cranial computed tomography or magnetic resonance imaging, is the backbone of stroke management strategies, which can guide treatment decision-making (thrombolysis or hemostasis) at an early stage. With advances in computational technologies, particularly in machine learning, visual image information can now be converted into numerous quantitative features in an objective, repeatable, and high-throughput manner, in a process known as radiomics. Radiomics is mainly used in the field of oncology, which remains an area of active research. Over the past few years, investigators have attempted to apply radiomics to stroke in the hope of gaining benefits similar to those obtained in cancer management, i.e., in promoting the development of personalized precision medicine. Currently, radiomic analysis has shown promise for a variety of applications in stroke, including the diagnosis of stroke lesions, early prediction of outcomes, and evaluation for long-term prognosis. In this article, we elaborate the contributions of radiomics to stroke, as well as the subprocesses and techniques involved in radiomics studies. We also discuss the potential challenges facing its widespread implementation in routine practice and the directions for future research.

Keywords: decision-making; neuroimaging; radiomics; stroke; texture analysis.

Conflict of interest statement

Conflict of Interest The authors declare no conflict of interest.

copyright: © 2021 Chen et al.

Figures

Figure 1.
Figure 1.
Flowchart shows the typical process of radiomics in stroke neuroimaging. (A) Example CT image of an intracerebral hemorrhage and (B) example MR image of a patient with ischemic stroke.
Figure 2.
Figure 2.
Texture in radiomics. (A) A stylized gray-level image (5 x 5 pixels) with grey values ranging from 0 (black) to 5 (white) and its derived gray-level co-occurrence matrix (GLCM) in horizontal (B), vertical (C), and oblique (D) directions. Row and column numbers in the GLCM represent corresponding gray values, while cells in white contain the number of times corresponding gray values occurs adjacent to each other in three directions. For example, the frequency of gray values of 0, 2, and 3 (red arrows on the gray-level image) is then mapped onto corresponding cell of GLCM (red circles) each time they occur adjacent to each other in particular direction. In texture analysis, GLCM represents spatial interrelationship between pixels within a digital image.

References

    1. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, et al. (2013). An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 44:2064-2089.
    1. Rajsic S, Gothe H, Borba HH, Sroczynski G, Vujicic J, Toell T, et al. (2018). Economic burden of stroke: a systematic review on post-stroke care. The European Journal of Health Economics, 20:107-134.
    1. Johnson CO, Nguyen M, Roth GA, Nichols E, Alam T, Abate D, et al. (2019). Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 18:439-458.
    1. Buckler AJ, Bresolin L, Dunnick NR, Sullivan DC, Group (2011). A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging. Radiology, 258:906-914.
    1. Lambin P, van Stiphout RG, Starmans MH, Rios-Velazquez E, Nalbantov G, Aerts HJ, et al. (2013). Predicting outcomes in radiation oncology--multifactorial decision support systems. Nat Rev Clin Oncol, 10:27-40.
    1. Badhiwala JH, Nassiri F, Alhazzani W, Selim MH, Farrokhyar F, Spears J, et al. (2015). Endovascular Thrombectomy for Acute Ischemic Stroke. JAMA, 314:1832-1843.
    1. Goyal M, Menon BK, van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk AM, et al. (2016). Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet, 387:1723-1731.
    1. Davis S, Campbell B, Christensen S, Ma H, Desmond P, Parsons M, et al. (2012). Perfusion/Diffusion mismatch is valid and should be used for selecting delayed interventions. Transl Stroke Res, 3:188-197.
    1. Morotti A, Boulouis G, Romero JM, Brouwers HB, Jessel MJ, Vashkevich A, et al. (2017). Blood pressure reduction and noncontrast CT markers of intracerebral hemorrhage expansion. Neurology, 89:548-554.
    1. Morotti A, Brouwers HB, Romero JM, Jessel MJ, Vashkevich A, Schwab K, et al. (2017). Intensive Blood Pressure Reduction and Spot Sign in Intracerebral Hemorrhage: A Secondary Analysis of a Randomized Clinical Trial. JAMA Neurol, 74:950-960.
    1. Meretoja A, Churilov L, Campbell BC, Aviv RI, Yassi N, Barras C, et al. (2014). The spot sign and tranexamic acid on preventing ICH growth--AUStralasia Trial (STOP-AUST): protocol of a phase II randomized, placebo-controlled, double-blind, multicenter trial. Int J Stroke, 9:519-524.
    1. Delcourt C, Zhang S, Arima H, Sato S, Al-Shahi Salman R, Wang X, et al. (2016). Significance of Hematoma Shape and Density in Intracerebral Hemorrhage: The Intensive Blood Pressure Reduction in Acute Intracerebral Hemorrhage Trial Study. Stroke, 47:1227-1232.
    1. Avanzo M, Stancanello J, El Naqa I (2017). Beyond imaging: The promise of radiomics. Phys Med, 38:122-139.
    1. Yip SS, Aerts HJ (2016). Applications and limitations of radiomics. Phys Med Biol, 61:R150-166.
    1. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. (2012). Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 48:441-446.
    1. Gillies RJ, Kinahan PE, Hricak H (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278:563-577.
    1. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 5:4006-4006.
    1. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. (2019). The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics, 9:1303-1322.
    1. Gatenby RA, Grove O, Gillies RJ (2013). Quantitative Imaging in Cancer Evolution and Ecology. Radiology, 269:8-14.
    1. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. (2017). Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 14:749-762.
    1. Heit JJ, Iv M, Wintermark M (2017). Imaging of Intracranial Hemorrhage. J Stroke, 19:11-27.
    1. Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W (2017). Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol, 90:20160665.
    1. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. (2012). Radiomics: the process and the challenges. Magn Reson Imaging, 30:1234-1248.
    1. Midya A, Chakraborty J, Gönen M, Do RKG, Simpson AL (2018). Influence of CT acquisition and reconstruction parameters on radiomic feature reproducibility. Journal of medical imaging (Bellingham, Wash.), 5:011020-011020.
    1. Meyer M, Ronald J, Vernuccio F, Nelson RC, Ramirez-Giraldo JC, Solomon J, et al. (2019). Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings. Radiology, 293:583-591.
    1. Berenguer R, Pastor-Juan MDR, Canales-Vázquez J, Castro-García M, Villas MV, Mansilla Legorburo F, et al. (2018). Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology, 288:407-415.
    1. Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, et al. (2015). Measuring Computed Tomography Scanner Variability of Radiomics Features. Invest Radiol, 50:757-765.
    1. Larue R, van Timmeren JE, de Jong EEC, Feliciani G, Leijenaar RTH, Schreurs WMJ, et al. (2017). Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol, 56:1544-1553.
    1. Shafiq-Ul-Hassan M, Latifi K, Zhang G, Ullah G, Gillies R, Moros E (2018). Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci Rep, 8:10545.
    1. Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, et al. (2017). Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys, 44:1050-1062.
    1. Yao X, Liao L, Han Y, Wei T, Wu H, Wang Y, et al. (2019). Computerized Tomography Radiomics Features Analysis for Evaluation of Perihematomal Edema in Basal Ganglia Hemorrhage. J Craniofac Surg, 30:e768-e771.
    1. Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ (2017). CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics, 37:1483-1503.
    1. Ng F, Kozarski R, Ganeshan B, Goh V (2013). Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol, 82:342-348.
    1. Mitra J, Bourgeat P, Fripp J, Ghose S, Rose S, Salvado O, et al. (2014). Lesion segmentation from multimodal MRI using random forest following ischemic stroke. NeuroImage, 98:324-335.
    1. McKinley R, Hani L, Gralla J, El-Koussy M, Bauer S, Arnold M, et al. (2017). Fully automated stroke tissue estimation using random forest classifiers (FASTER). J Cereb Blood Flow Metab, 37:2728-2741.
    1. Subbanna NK, Rajashekar D, Cheng B, Thomalla G, Fiehler J, Arbel T, et al. (2019). Stroke Lesion Segmentation in FLAIR MRI Datasets Using Customized Markov Random Fields. Front Neurol, 10:541-541.
    1. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al. (2017). Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal, 36:61-78.
    1. Xu X, Chen X, Zhang J, Zheng Y, Sun G, Yu X, et al. (2014). Comparison of the Tada formula with software slicer: precise and low-cost method for volume assessment of intracerebral hematoma. Stroke, 45:3433-3435.
    1. Scherer M, Cordes J, Younsi A, Sahin Y-A, Götz M, Möhlenbruch M, et al. (2016). Development and Validation of an Automatic Segmentation Algorithm for Quantification of Intracerebral Hemorrhage. Stroke, 47:2776-2782.
    1. Hassani C, Varghese BA, Nieva J, Duddalwar V (2019). Radiomics in Pulmonary Lesion Imaging. AJR Am J Roentgenol, 212:497-504.
    1. Haralick RM, Shanmugam K, Dinstein I (1973). Textural Features for Image Classification. Ieee Transactions on Systems Man and Cybernetics, Smc3:610-621.
    1. Castellano G, Bonilha L, Li LM, Cendes F (2004). Texture analysis of medical images. Clin Radiol, 59:1061-1069.
    1. Scalco E, Rizzo G (2017). Texture analysis of medical images for radiotherapy applications. Br J Radiol, 90:20160642.
    1. Porwik P, Lisowska A (2004). The Haar-wavelet transform in digital image processing: its status and achievements. Machine Graphics & Vision, 13:79-98.
    1. Davnall F, Yip CSP, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. (2012). Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights into Imaging, 3:573-589.
    1. Shen Q, Shan Y, Hu Z, Chen W, Yang B, Han J, et al. (2018). Quantitative parameters of CT texture analysis as potential markersfor early prediction of spontaneous intracranial hemorrhage enlargement. Eur Radiol, 28:4389-4396.
    1. Ma C, Zhang Y, Niyazi T, Wei J, Guocai G, Liu J, et al. (2019). Radiomics for predicting hematoma expansion in patients with hypertensive intraparenchymal hematomas. Eur J Radiol, 115:10-15.
    1. Li H, Xie Y, Wang X, Chen F, Sun J, Jiang X (2019). Radiomics features on non-contrast computed tomography predict early enlargement of spontaneous intracerebral hemorrhage. Clin Neurol Neurosurg, 185:105491.
    1. Xie H, Ma S, Wang X, Zhang X (2020). Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model. Eur Radiol, 30:87-98.
    1. Bagherzadeh-Khiabani F, Ramezankhani A, Azizi F, Hadaegh F, Steyerberg EW, Khalili D (2016). A tutorial on variable selection for clinical prediction models: feature selection methods in data mining could improve the results. J Clin Epidemiol, 71:76-85.
    1. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts H (2015). Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep, 5:13087.
    1. Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG (2015). A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol, 68:279-289.
    1. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al. (2017). Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. JAMA, 318:1377-1384.
    1. Musuka TD, Wilton SB, Traboulsi M, Hill MD (2015). Diagnosis and management of acute ischemic stroke: speed is critical. CMAJ, 187:887-893.
    1. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, et al. (2012). Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet, 379:2364-2372.
    1. Oliveira MS, Fernandes PT, Avelar WM, Santos SL, Castellano G, Li LM (2009). Texture analysis of computed tomography images of acute ischemic stroke patients. Braz J Med Biol Res, 42:1076-1079.
    1. Peter R, Korfiatis P, Blezek D, Oscar Beitia A, Stepan-Buksakowska I, Horinek D, et al. (2017). A quantitative symmetry-based analysis of hyperacute ischemic stroke lesions in noncontrast computed tomography. Med Phys, 44:192-199.
    1. Sikio M, Kolhi P, Ryymin P, Eskola HJ, Dastidar P (2015). MRI Texture Analysis and Diffusion Tensor Imaging in Chronic Right Hemisphere Ischemic Stroke. J Neuroimaging, 25:614-619.
    1. Ortiz-Ramon R, Valdes Hernandez MDC, Gonzalez-Castro V, Makin S, Armitage PA, Aribisala BS, et al. (2019). Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images. Comput Med Imaging Graph, 74:12-24.
    1. Kassner A, Liu F, Thornhill RE, Tomlinson G, Mikulis DJ (2009). Prediction of hemorrhagic transformation in acute ischemic stroke using texture analysis of postcontrast T1-weighted MR images. J Magn Reson Imaging, 30:933-941.
    1. Qiu W, Kuang H, Nair J, Assis Z, Najm M, McDougall C, et al. (2019). Radiomics-Based Intracranial Thrombus Features on CT and CTA Predict Recanalization with Intravenous Alteplase in Patients with Acute Ischemic Stroke. AJNR Am J Neuroradiol, 40:39-44.
    1. Tang TY, Jiao Y, Cui Y, Zhao DL, Zhang Y, Wang Z, et al. (2020). Penumbra-based radiomics signature as prognostic biomarkers for thrombolysis of acute ischemic stroke patients: a multicenter cohort study. J Neurol: 10.1007/s00415-00020-09713-00417.
    1. Cui H, Wang X, Bian Y, Song S, Feng DD (2018). Ischemic stroke clinical outcome prediction based on image signature selection from multimodality data. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2018:722-725.
    1. Betrouni N, Yasmina M, Bombois S, Petrault M, Dondaine T, Lachaud C, et al. (2019). Texture Features of Magnetic Resonance Images: an Early Marker of Post-stroke Cognitive Impairment. Transl Stroke Res: 10.1007/s12975-12019-00746-12973.
    1. Keep RF, Hua Y, Xi G (2012). Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol, 11:720-731.
    1. Zhang Y, Zhang B, Liang F, Liang S, Zhang Y, Yan P, et al. (2019). Radiomics features on non-contrast-enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hematoma types. Eur Radiol, 29:2157-2165.
    1. Brouwers HB, Greenberg SM (2013). Hematoma expansion following acute intracerebral hemorrhage. Cerebrovasc Dis, 35:195-201.
    1. Dowlatshahi D, Demchuk AM, Flaherty ML, Ali M, Lyden PL, Smith EE, et al. (2011). Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology, 76:1238-1244.
    1. Al-Shahi Salman R, Frantzias J, Lee RJ, Lyden PD, Battey TWK, Ayres AM, et al. (2018). Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurol, 17:885-894.
    1. Barras CD, Tress BM, Christensen S, Collins M, Desmond PM, Skolnick BE, et al. (2013). Quantitative CT densitometry for predicting intracerebral hemorrhage growth. AJNR Am J Neuroradiol, 34:1139-1144.
    1. Kanazawa T, Takahashi S, Minami Y, Jinzaki M, Toda M, Yoshida K (2020). Early prediction of clinical outcomes in patients with aneurysmal subarachnoid hemorrhage using computed tomography texture analysis. J Clin Neurosci, 71:144-149.
    1. Woo PYM, Tse TPK, Chan RSK, Leung LNY, Liu SKK, Leung AYT, et al. (2017). Computed tomography interobserver agreement in the assessment of aneurysmal subarachnoid hemorrhage and predictors for clinical outcome. J Neurointerv Surg, 9:1118-1124.
    1. Ahn SH, Savarraj JP, Pervez M, Jones W, Park J, Jeon SB, et al. (2018). The Subarachnoid Hemorrhage Early Brain Edema Score Predicts Delayed Cerebral Ischemia and Clinical Outcomes. Neurosurgery, 83:137-145.
    1. Zwanenburg A, Leger S, Vallieres M, Lo S Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003.
    1. Clarke LP, Nordstrom RJ, Zhang H, Tandon P, Zhang Y, Redmond G, et al. (2014). The Quantitative Imaging Network: NCI's Historical Perspective and Planned Goals. Transl Oncol, 7:1-4.
    1. Boers AM, Zijlstra IA, Gathier CS, van den Berg R, Slump CH, Marquering HA, et al. (2014). Automatic quantification of subarachnoid hemorrhage on noncontrast CT. AJNR Am J Neuroradiol, 35:2279-2286.
    1. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. (2017). A survey on deep learning in medical image analysis. Med Image Anal, 42:60-88.
    1. Feng R, Badgeley M, Mocco J, Oermann EK (2018). Deep learning guided stroke management: a review of clinical applications. J Neurointerv Surg, 10:358-362.
    1. Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP (2018). Deep Learning in Neuroradiology. AJNR Am J Neuroradiol, 39:1776-1784.

Source: PubMed

3
Subscribe