The rationale for treating uveal melanoma with adjuvant melatonin: a review of the literature

Anna Hagström, Ruba Kal Omar, Pete A Williams, Gustav Stålhammar, Anna Hagström, Ruba Kal Omar, Pete A Williams, Gustav Stålhammar

Abstract

Background: Uveal melanoma is a rare form of cancer with high mortality. The incidence of metastases is attributed to early seeding of micrometastases from the eye to distant organs, primarily the liver. Once these seeded clusters of dormant tumor cells grow into larger radiologically detectable macrometastases, median patient survival is about 1 year. Melatonin is an important hormone for synchronizing circadian rhythms. It is also involved in other aspects of human physiology and may offer therapeutic benefits for a variety of diseases including cancer.

Methods: Articles involving the physiological effects of melatonin, pharmacokinetics, and previous use in cancer studies were acquired using a comprehensive literature search in the Medline (PubMed) and Web of Science databases. In total, 147 publications were selected and included in the review.

Results: Melatonin has been observed to suppress the growth of cancer cells, inhibit metastatic spread, enhance immune system functions, and act as an anti-inflammatory in both in vitro and in vivo models. Melatonin may also enhance the efficacy of cancer treatments such as immuno- and chemotherapy. Numerous studies have shown promising results for oral melatonin supplementation in patients with other forms of cancer including cutaneous malignant melanoma. Cell line and animal studies support a hypothesis in which similar benefits may exist for uveal melanoma.

Conclusions: Given its low cost, good safety profile, and limited side effects, there may be potential for the use of melatonin as an adjuvant oncostatic treatment. Future avenues of research could include clinical trials to evaluate the effect of melatonin in prevention of macrometastases of uveal melanoma.

Keywords: Adjuvant treatment; Choroidal melanoma; Dormancy; Melatonin; Metastasis; Micrometastasis; Rationale; Survival, review; Uveal melanoma.

Conflict of interest statement

Gustav Stålhammar has received honoraria for consultancy and service on an advisory board (Santen SA). The other authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Literature search. The selection of articles for this analysis was performed in three steps. Articles were identified using specific search terms, abstracts were then screened, and lastly, full text articles were assessed for eligibility based on our exclusion criteria. Through this process 147 articles were selected and included in this review
Fig. 2
Fig. 2
Melatonin synthesis pathway. Tryptophan is hydroxylated by tryptophan hydroxylase (TPH) to 5-hydroxytryptophan which is subsequently decarboxylated by aromatic amino acid decarboxylase (AADC) resulting in serotonin. Serotonin is converted to N-acetylserotonin by Arylalkylamine N-acetyltransferase (AA-NAT) which is then catalyzed by N-acetylserotonin O-methyltransferase (ASMT) to produce melatonin
Fig. 3
Fig. 3
The anatomy of melatonin secretion. The production and release of melatonin are mainly mediated by postganglionic retinal nerve fibers that exits the eye through the optic nerve, pass through the retinohypothalamic tract to the suprachiasmatic nucleus and then to the pineal gland via the superior cervical ganglion. This axis is activated by darkness and suppressed by light. The circadian rhythm of melatonin secretion is to a lesser extent also controlled by the suprachiasmatic nucleus
Fig. 4
Fig. 4
Oncosuppressive mechanisms mediated by melatonin. Melatonin (MLT) activates the high-affinity G protein-coupled receptors MT1 and MT2 which reduce the transcriptional activity of NF-κB and activates phosphorylation cascades mediated by mitogen-activated protein kinases (MAPKs) including MEK1/2, ERK1/2, JNK, and p38. In turn, NF-κB inhibition and MAPKs activation inhibit cell growth and motility and promote apoptosis and DNA damage repair through accumulation of oncosuppressors such as p53, p27kip1, and p21. NF-κB inhibition and MAPKs activation also activates DNA repair complexes such as P53/PML/H2AX on DNA damage sites, and transcriptional control of genes involved in the cell cycle, apoptosis, and invasiveness. Further, melatonin can bind to the intracellular protein calmodulin (CaM) and reduce the Estrogen Receptor α (Erα) response in ER positive cells by impairing the formation of a proper E2–Erα–CaM complex on target genes. Melatonin downregulates the nuclear RZR receptors (RZR alpha, RZR beta, ROR alpha 1, RZR alpha 2, ROR alpha 3 and ROR gamma), inhibiting growth, angiogenesis and HIF-1α activity. Arrows indicate activation, while dashed blunt lines indicate inhibition. Activation indicates an increase in protein or activity levels, while inhibition indicates a decrease in protein or activity levels

References

    1. Shields JA, Shields CL, Donoso LA. Management of posterior uveal melanoma. Surv Ophthalmol. 1991;36(3):161–195. doi: 10.1016/0039-6257(91)90001-V.
    1. Rantala ES, Hernberg M, Kivelä TT. Overall survival after treatment for metastatic uveal melanoma: a systematic review and meta-analysis. Melanoma Res. 2019;29(6):561–568. doi: 10.1097/CMR.0000000000000575.
    1. Khoja L, Atenafu EG, Suciu S, Leyvraz S, Sato T, Marshall E, et al. Meta-analysis in metastatic uveal melanoma to determine progression free and overall survival benchmarks: an international rare cancers initiative (IRCI) ocular melanoma study. Ann Oncol. 2019;30(8):1370–1380. doi: 10.1093/annonc/mdz176.
    1. Küsters-Vandevelde HVN, Küsters B, Van Engen-van Grunsven ACH, Groenen PJTA, Wesseling P, Blokx WAM. Primary melanocytic tumors of the central nervous system: a review with focus on molecular aspects. Brain Pathol. 2015;25(2):209–226. doi: 10.1111/bpa.12241.
    1. Singh AD, Shields CL, Shields JA, Sato T. Uveal melanoma in young patients. Arch Ophthalmol (Chicago, Ill : 1960) 2000;118(7):918–923.
    1. Kaliki S, Shields CL. Uveal melanoma: relatively rare but deadly cancer. Eye. 2017;31(2):241–257. doi: 10.1038/eye.2016.275.
    1. Stålhammar G, See TR, Filì M, Seregard S. No gender differences in long-term survival after brachytherapy of 1,541 patients with uveal melanoma. Ocular Oncol Pathol. 2019;5(6):432–439. doi: 10.1159/000497186.
    1. Hu D-N, Yu G-P, McCormick SA, Schneider S, Finger PT. Population-based incidence of uveal melanoma in various races and ethnic groups. Am J Ophthalmol. 2005;140(4):612.e1–612.e8. doi: 10.1016/j.ajo.2005.05.034.
    1. Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011;118(9):1881–1885. doi: 10.1016/j.ophtha.2011.01.040.
    1. Virgili G, Gatta G, Ciccolallo L, Capocaccia R, Biggeri A, Crocetti E, et al. Incidence of uveal melanoma in Europe. Ophthalmology. 2007;114(12):2309–2315.e2. doi: 10.1016/j.ophtha.2007.01.032.
    1. Aronow ME, Topham AK, Singh AD. Uveal melanoma: 5-year update on incidence, treatment, and survival (SEER 1973-2013) Ocular Oncol Pathol. 2018;4(3):145–151. doi: 10.1159/000480640.
    1. Stålhammar G, Herrspiegel C. Long-term relative survival in uveal melanoma: a systematic review and meta-analysis. Commun Med. 2022;2(18).
    1. Jager MJ, Shields CL, Cebulla CM, Abdel-Rahman MH, Grossniklaus HE, Stern M-H, et al. Uveal melanoma. Nat Rev Dis Primers. 2020;6(1):24. doi: 10.1038/s41572-020-0158-0.
    1. Nayman T, Bostan C, Logan P, Burnier MN. Uveal melanoma risk factors: a systematic review of meta-analyses. Curr Eye Res. 2017;42(8):1085–1093. doi: 10.1080/02713683.2017.1297997.
    1. Wakamatsu K, Hu D-N, McCormick SA, Ito S. Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides. Pigment Cell Melanoma Res. 2007;21(1):97–105. doi: 10.1111/j.1755-148X.2007.00415.x.
    1. Mäkitie T, Summanen P, Tarkkanen A, Kivelä T. Tumor-infiltrating macrophages (CD68(+) cells) and prognosis in malignant uveal melanoma. Invest Ophthalmol Vis Sci. 2001;42(7):1414–1421.
    1. Horsman DE, Sroka H, Rootman J, White VA. Monosomy 3 and isochromosome 8q in a uveal melanoma. Cancer Genet Cytogenet. 1990;45(2):249–253. doi: 10.1016/0165-4608(90)90090-W.
    1. Harbour JW, Onken MD, Roberson EDO, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410–1413. doi: 10.1126/science.1194472.
    1. Yavuzyigitoglu S, Koopmans AE, Verdijk RM, Vaarwater J, Eussen B, van Bodegom A, et al. Uveal melanomas with SF3B1 mutations. Ophthalmology. 2016;123(5):1118–1128. doi: 10.1016/j.ophtha.2016.01.023.
    1. Ewens KG, Kanetsky PA, Richards-Yutz J, Purrazzella J, Shields CL, Ganguly T, et al. Chromosome 3 status combined with BAP1 and EIF1AX mutation profiles are associated with metastasis in uveal melanoma. Investig Opthalmol Visual Sci. 2014;55(8):5160. doi: 10.1167/iovs.14-14550.
    1. Vader MJC, Madigan MC, Versluis M, Suleiman HM, Gezgin G, Gruis NA, et al. GNAQ and GNA11 mutations and downstream YAP activation in choroidal nevi. Br J Cancer. 2017;117(6):884–887. doi: 10.1038/bjc.2017.259.
    1. Kujala E, Mäkitie T, Kivela T. Very long-term prognosis of patients with malignant uveal melanoma. Investig Opthalmol Visual Sci. 2003;44(11):4651. doi: 10.1167/iovs.03-0538.
    1. Eagle RC. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma. Arch Ophthalmol. 2006;124(12):1684. doi: 10.1001/archopht.124.12.1684.
    1. Melia BM, Abramson DH, Albert DM, Boldt HC, Earle JD, Hanson WF, Montague P, Moy CS, Schachat AP, Simpson ER, Straatsma BR, Vine AK, Weingeist TA. Collaborative ocular melanoma study (COMS) randomized trial of I-125 brachytherapy for medium choroidal melanoma I. visual acuity after 3 years COMS report no. 16. Ophthalmology. 2001;108(2):348–66.
    1. Eide N, Hoifødt HK, Nesland JM, Faye RS, Qvale GA, Faber RT, et al. Disseminated tumour cells in bone marrow of patients with uveal melanoma. Acta Ophthalmol. 2013;91(4):343–348. doi: 10.1111/j.1755-3768.2012.02449.x.
    1. Yu G, Jing Y, Kou X, Ye F, Gao L, Fan Q, et al. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma. PLoS One. 2013;8(9):e73312. doi: 10.1371/journal.pone.0073312.
    1. Singh AD. Uveal melanoma: implications of tumor doubling time. Ophthalmology. 2001;108(5):829–830. doi: 10.1016/S0161-6420(00)00607-2.
    1. Uner OE, See TRO, Szalai E, Grossniklaus HE, Stålhammar G. Author correction: estimation of the timing of BAP1 mutation in uveal melanoma progression. Sci Rep. 2021;11(1):17036. doi: 10.1038/s41598-021-96113-0.
    1. Grossniklaus HE. Understanding uveal melanoma metastasis to the liver: the Zimmerman effect and the Zimmerman hypothesis. Ophthalmology. 2019;126(4):483–487. doi: 10.1016/j.ophtha.2018.09.031.
    1. Kubatka P, Zubor P, Busselberg D, Kwon TK, Adamek M, Petrovic D, et al. Melatonin and breast cancer: evidences from preclinical and human studies. Crit Rev Oncol Hematol. 2018;122:133–143. doi: 10.1016/j.critrevonc.2017.12.018.
    1. Anisimov VN, Popovich IG, Shtylik AV, Zabezhinski MA, Ben-Huh H, Gurevich P, et al. Melatonin and colon carcinogenesis. Exp Toxicol Pathol. 2000;52(1):71–76. doi: 10.1016/S0940-2993(00)80022-6.
    1. Wang S, Tai H, Tang C, Lin L, Lin T, Chang A, et al. Melatonin impedes prostate cancer metastasis by suppressing MMP-13 expression. J Cell Physiol. 2021;236(5):3979–3990. doi: 10.1002/jcp.30150.
    1. Fernández-Palanca P, Méndez-Blanco C, Fondevila F, Tuñón MJ, Reiter RJ, Mauriz JL, et al. Melatonin as an antitumor agent against liver cancer: an updated systematic review. Antioxidants. 2021;10(1):103. doi: 10.3390/antiox10010103.
    1. Galien. Galen on the usefulness of the parts of the body: De Usu Partium. 1968.
    1. McCord CP, Allen FP. Evidences associating pineal gland function with alterations in pigmentation. J Exp Zool. 1917;23(1):207–224. doi: 10.1002/jez.1400230108.
    1. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc. 1958;80(10):2587. doi: 10.1021/ja01543a060.
    1. Slominski A, Fischer TW, Zmijewski MA, Wortsman J, Semak I, Zbytek B, et al. On the role of melatonin in skin physiology and pathology. Endocrine. 2005;27(2):137–148. doi: 10.1385/ENDO:27:2:137.
    1. Bubenik GA. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci. 2002;47(10):2336–2348. doi: 10.1023/A:1020107915919.
    1. Cahill GM, Besharse JC. Circadian clock functions localized in xenopus retinal photoreceptors. Neuron. 1993;10(4):573–577. doi: 10.1016/0896-6273(93)90160-S.
    1. Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni GJM. Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res. 2000;28(4):193–202. doi: 10.1034/j.1600-079X.2000.280401.x.
    1. Tan D, Xu B, Zhou X, Reiter R. Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules. 2018;23(2):301. doi: 10.3390/molecules23020301.
    1. Tan D-X, RusselJ R. Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res. 2019;2(1):44–66. doi: 10.32794/mr11250011.
    1. Axelrod J, Weissbach H. Enzymatic O-methylation of N-Acetylserotonin to melatonin. Science. 1960;131(3409):1312. doi: 10.1126/science.131.3409.1312.
    1. Weissbach H, Redfield BG, Axelrod J. Biosynthesis of melatonin: enzymic conversion of serotonin to N-acetylserotonin. Biochim Biophys Acta. 1960;43:352–353. doi: 10.1016/0006-3002(60)90453-4.
    1. Tricoire H, Møller M, Chemineau P, Malpaux B. Origin of cerebrospinal fluid melatonin and possible function in the integration of photoperiod. Reprod (Cambridge, England) Supplement. 2003;61:311–321.
    1. Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, et al. Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol. 2019;10.
    1. Maestroni GJM. The immunoneuroendocrine role of melatonin. J Pineal Res. 1993;14(1):1–10. doi: 10.1111/j.1600-079X.1993.tb00478.x.
    1. Claustrat B, Leston J. Melatonin: physiological effects in humans. Neurochirurgie. 2015;61(2–3):77–84. doi: 10.1016/j.neuchi.2015.03.002.
    1. Tan D-X, Manchester LC, Hardeland R, Lopez-Burillo S, Mayo JC, Sainz RM, et al. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res. 2003;34(1):75–78. doi: 10.1034/j.1600-079X.2003.02111.x.
    1. Tan D, Chen LD, Poeggeler B, Manchester LC, Reiter RJ. Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J. 1993;1:57–60.
    1. Tan D-X, Manchester LC, Reiter RJ, Qi W-B, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: reactions and products. Neurosignals. 2000;9(3–4):137–159. doi: 10.1159/000014635.
    1. Nelson RJ, Chbeir S. Dark matters: effects of light at night on metabolism. Proc Nutr Soc. 2018;77(3):223–229. doi: 10.1017/S0029665118000198.
    1. Hattar S, Liao H-W, Takao M, Berson DM, Yau K-W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065–1070. doi: 10.1126/science.1069609.
    1. Borjigin J, Samantha Zhang L, Calinescu A-A. Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol. 2012;349(1):13–19. doi: 10.1016/j.mce.2011.07.009.
    1. Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336(3):186–195. doi: 10.1056/NEJM199701163360306.
    1. Waldhauser F, Frisch H, Waldhauser M, Weiszenbacher G, Zeitlhuber U, RichardJ W. Fall in nocturnal serum melatonin during prepuberty and pubescense. Lancet. 1984;323(8373):362–365. doi: 10.1016/S0140-6736(84)90412-4.
    1. Rossignol D, Frye R. Melatonin in autism spectrum disorders: a systematic review and meta-analysis. Dev Med Child Neurol. 2011;53(9):783–792. doi: 10.1111/j.1469-8749.2011.03980.x.
    1. Sadat-Ali M, Al-Habdan I, Al-Othman A. Adolescent idiopathic scoliosis. Is low melatonin a cause? Joint Bone Spine. 2000;67(1):62–64.
    1. Zhou J-N, Liu R-Y, Kamphorst W, Hofman MA, Swaab DF. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res. 2003;35(2):125–130. doi: 10.1034/j.1600-079X.2003.00065.x.
    1. Brown RP, Kocsis JH, Caroff S, Amsterdam J, Winokur A, Stokes P, et al. Depressed mood and reality disturbance correlate with decreased nocturnal melatonin in depressed patients. Acta Psychiatr Scand. 1987;76(3):272–275. doi: 10.1111/j.1600-0447.1987.tb02895.x.
    1. Rosen R, Hu D-N, Perez V, Tai K, Yu G-P, Chen M, et al. Urinary 6-sulfatoxymelatonin level in age-related macular degeneration patients. Mol Vis. 2009;15:1673–1679.
    1. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, et al. Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 2017;15(3):434–443. doi: 10.2174/1570159X14666161228122115.
    1. Mills E, Wu P, Seely D, Guyatt G. Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis. J Pineal Res. 2005;39(4):360–366. doi: 10.1111/j.1600-079X.2005.00258.x.
    1. Andersen LPH, Werner MU, Rosenkilde MM, Harpsøe NG, Fuglsang H, Rosenberg J, et al. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol Toxicol. 2016;17(1):8. doi: 10.1186/s40360-016-0052-2.
    1. Zimmermann RC, McDougle CJ, Schumacher M, Olcese J, Heninger GR, Price LH. Urinary 6-hydroxymelatonin sulfate as a measure of melatonin secretion during acute tryptophan depletion. Psychoneuroendocrinology. 1993;18(8):567–578. doi: 10.1016/0306-4530(93)90034-I.
    1. Cardinali DP, Golombek DA, Rosenstein RE, Cutrera RA, Esquifino AI. Melatonin site and mechanism of action: single or multiple? J Pineal Res. 1997;23(1):32–39. doi: 10.1111/j.1600-079X.1997.tb00332.x.
    1. Aust S, Thalhammer T, Humpeler S, Jager W, Klimpfinger M, Tucek G, et al. The melatonin receptor subtype MT1 is expressed in human gallbladder epithelia. J Pineal Res. 2004;36(1):43–48. doi: 10.1046/j.1600-079X.2003.00095.x.
    1. Fischer TW, Slominski A, Zmijewski MA, Reiter RJ, Paus R. Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol. 2008;17(9):713–730. doi: 10.1111/j.1600-0625.2008.00767.x.
    1. Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27(2):101–110. doi: 10.1385/ENDO:27:2:101.
    1. Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJM, Zisapel N, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008;85(3):335–353. doi: 10.1016/j.pneurobio.2008.04.001.
    1. Slominski A, Wortsman J, Tobin DJ. The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J. 2005;19(2):176–194. doi: 10.1096/fj.04-2079rev.
    1. Jockers R, Maurice P, Boutin JA, Delagrange P. Melatonin receptors, heterodimerization, signal transduction and binding sites: what’s new? Br J Pharmacol. 2008;154(6):1182–1195. doi: 10.1038/bjp.2008.184.
    1. Savaskan E, Ayoub MA, Ravid R, Angeloni D, Fraschini F, Meier F, et al. Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J Pineal Res. 2005;38(1):10–16. doi: 10.1111/j.1600-079X.2004.00169.x.
    1. Brunner P, Sözer-Topcular N, Jockers R, Ravid R, Angeloni D, Fraschini F, et al. Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer’s disease. Eur J Histochem. 2007;50(4):311–316.
    1. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci. 1995;92(19):8734–8738. doi: 10.1073/pnas.92.19.8734.
    1. Slaugenhaupt SA, Roca AL, Liebert CB, Altherr MR, Gusella JF, Reppert SM. Mapping of the gene for the mel1a-melatonin receptor to human chromosome 4 (MTNR1A) and mouse chromosome 8 (Mtnr1a) Genomics. 1995;27(2):355–357. doi: 10.1006/geno.1995.1056.
    1. Duncan MJ, Takahashi JS, Dubocovich ML. 2-[125I]iodomelatonin binding sites in hamster brain membranes: pharmacological characteristics and regional distribution*. Endocrinology. 1988;122(5):1825–1833. doi: 10.1210/endo-122-5-1825.
    1. Zhao Q, Yang XL, Holtzclaw WD, Talalay P. Unexpected genetic and structural relationships of a long-forgotten flavoenzyme to NAD(P)H:quinone reductase (DT-diaphorase) Proc Natl Acad Sci. 1997;94(5):1669–1674. doi: 10.1073/pnas.94.5.1669.
    1. Nosjean O, Ferro M, Cogé F, Beauverger P, Henlin J-M, Lefoulon F, et al. Identification of the melatonin-binding SiteMT 3 as the Quinone reductase 2. J Biol Chem. 2000;275(40):31311–31317. doi: 10.1074/jbc.M005141200.
    1. Smirnov AN. Nuclear melatonin receptors. Biochemistry (Mosc) 2001;66(1):19–26. doi: 10.1023/A:1002821427018.
    1. Dai J, Ram PT, Yuan L, Spriggs LL, Hill SM. Transcriptional repression of RORα activity in human breast cancer cells by melatonin. Mol Cell Endocrinol. 2001;176(1–2):111–120. doi: 10.1016/S0303-7207(01)00449-X.
    1. Hevia D, González-Menéndez P, Quiros-González I, Miar A, Rodríguez-García A, Tan D-X, et al. Melatonin uptake through glucose transporters: a new target for melatonin inhibition of cancer. J Pineal Res. 2015;58(2):234–250. doi: 10.1111/jpi.12210.
    1. Dubocovich ML. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med. 2007;8:34–42. doi: 10.1016/j.sleep.2007.10.007.
    1. Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997;19(1):91–102. doi: 10.1016/S0896-6273(00)80350-5.
    1. Gobbi G, Comai S. Differential function of melatonin MT1 and MT2 receptors in REM and NREM sleep. Front Endocrinol. 2019;10.
    1. Niles LP, Armstrong KJ, Rincón Castro L, Dao CV, Sharma R, McMillan CR, et al. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT 1 receptor with neuronal and glial markers. BMC Neurosci. 2004;5(1):41. doi: 10.1186/1471-2202-5-41.
    1. Luboshitzky R, Lavie P. Melatonin and sex hormone interrelationships - a review. J Pediatr Endocrinol Metab. 1999;12(3):355-62.
    1. Crowley SJ, Acebo C, Carskadon MA. Human puberty: salivary melatonin profiles in constant conditions. Dev Psychobiol. 2012;54(4):468–473. doi: 10.1002/dev.20605.
    1. Imenshahidi M, Karimi G, Hosseinzadeh H. Effects of melatonin on cardiovascular risk factors and metabolic syndrome: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(4):521–536. doi: 10.1007/s00210-020-01822-4.
    1. Celinski K, Konturek PC, Slomka M, Cichoz-Lach H, Brzozowski T, Konturek SJ. Effects of treatment with melatonin and tryptophan on liver enzymes, parameters of fat metabolism and plasma levels of cytokines in patients with non-alcoholic fatty liver disease--14 months follow up. J Physiol Pharmacol. 2014;65:75–82.
    1. Scheer FAJL, van Montfrans GA, van Someren EJW, Mairuhu G, Buijs RM. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension. 2004;43(2):192–197. doi: 10.1161/01.HYP.0000113293.15186.3b.
    1. Mansouri A, Demeilliers C, Amsellem S, Pessayre D, Fromenty B. Acute ethanol administration oxidatively damages and depletes mitochondrial dna in mouse liver, brain, heart, and skeletal muscles: protective effects of antioxidants. J Pharmacol Exp Ther. 2001;298(2):737–743.
    1. Tan D, Reiter R, Manchester L, Yan M, El-Sawi M, Sainz R, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem. 2002;2(2):181–197. doi: 10.2174/1568026023394443.
    1. Reiter RJ, Calvo JR, Karbownik M, Qi W, Tan DX. Melatonin and its relation to the immune system and inflammation. Ann N Y Acad Sci. 2006;917(1):376–386. doi: 10.1111/j.1749-6632.2000.tb05402.x.
    1. Srinivasan V, Pandi-Perumal SR, Maestroni GJM, Esquifino AI, Hardeland R, Cardinali DP. Role of melatonin in neurodegenerative diseases. Neurotox Res. 2005;7(4):293–318. doi: 10.1007/BF03033887.
    1. Miller SC, Pandi PSR, Esquifino AI, Cardinali DP, Maestroni GJM. The role of melatonin in immuno-enhancement: potential application in cancer. Int J Exp Pathol. 2006;87(2):81–87. doi: 10.1111/j.0959-9673.2006.00474.x.
    1. Sompol P, Liu X, Baba K, Paul KN, Tosini G, Iuvone PM, et al. N-acetylserotonin promotes hippocampal neuroprogenitor cell proliferation in sleep-deprived mice. Proc Natl Acad Sci. 2011;108(21):8844–8849. doi: 10.1073/pnas.1105114108.
    1. Buchanan KL, Yellon SM. Delayed puberty in the male Djungarian hamster: effect of short photoperiod or melatonin treatment on the GnRH neuronal system. Neuroendocrinology. 1991;54(2):96–102. doi: 10.1159/000125857.
    1. Boafo A, Greenham S, Alenezi S, Robillard R, Pajer K, Tavakoli P, et al. Could long-term administration of melatonin to prepubertal children affect timing of puberty? A clinician’s perspective. Nat Sci Sleep. 2019;11:1–10. doi: 10.2147/NSS.S181365.
    1. Simko F, Pechanova O, Repova Bednarova K, Krajcirovicova K, Celec P, Kamodyova N, et al. Hypertension and cardiovascular remodelling in rats exposed to continuous light: protection by ACE-inhibition and melatonin. Mediators Inflamm. 2014;2014:1–10. doi: 10.1155/2014/703175.
    1. Wessely A, Steeb T, Erdmann M, Heinzerling L, Vera J, Schlaak M, et al. The role of immune checkpoint blockade in uveal melanoma. Int J Mol Sci. 2020;21(3):879. doi: 10.3390/ijms21030879.
    1. Stålhammar G, Seregard S, Grossniklaus HE. Expression of immune checkpoint receptors Indoleamine 2,3-dioxygenase and T cell Ig and ITIM domain in metastatic versus nonmetastatic choroidal melanoma. Cancer Med. 2019;8:2784–2792.
    1. Javed A, Milhem M. Role of natural killer cells in uveal melanoma. Cancers. 2020;12(12):3694. doi: 10.3390/cancers12123694.
    1. Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci. 2017;74(21):3863–3881. doi: 10.1007/s00018-017-2609-7.
    1. Mediavilla M, Sanchez-Barcelo E, Tan D, Manchester L, Reiter R. Basic mechanisms involved in the anti-cancer effects of melatonin. Curr Med Chem. 2010;17(36):4462–4481. doi: 10.2174/092986710794183015.
    1. Qi X, Wang J. Melatonin improves mitochondrial biogenesis through the AMPK/PGC1α pathway to attenuate ischemia/reperfusion-induced myocardial damage. Aging. 2020;12(8):7299–7312. doi: 10.18632/aging.103078.
    1. Martin M, Macıas M, León J, Escames G, Khaldy H, Acuña-Castroviejo D. Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int J Biochem Cell Biol. 2002;34(4):348–357. doi: 10.1016/S1357-2725(01)00138-8.
    1. Yamamoto H, Tang H. Preventive effect of melatonin against cyanide-induced seizures and lipid peroxidation in mice. Neurosci Lett. 1996;207(2):89–92. doi: 10.1016/0304-3940(96)12493-9.
    1. Owino S, Contreras-Alcantara S, Baba K, Tosini G. Melatonin signaling controls the daily rhythm in blood glucose levels independent of peripheral clocks. PLoS One. 2016;11(1):e0148214. doi: 10.1371/journal.pone.0148214.
    1. Peschke E, Mühlbauer E, Mußhoff U, Csernus VJ, Chankiewitz E, Peschke D. Receptor (MT1) mediated influence of melatonin on cAMP concentration and insulin secretion of rat insulinoma cells INS-1. J Pineal Res. 2002;33(2):63–71. doi: 10.1034/j.1600-079X.2002.02919.x.
    1. Stumpf I, Mühlbauer E, Peschke E. Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic β-cells. J Pineal Res. 2008;45(3):318–327. doi: 10.1111/j.1600-079X.2008.00593.x.
    1. Bähr I, Mühlbauer E, Albrecht E, Peschke E. Evidence of the receptor-mediated influence of melatonin on pancreatic glucagon secretion via the Gαq protein-coupled and PI3K signaling pathways. J Pineal Res. 2012;53(4):390–398. doi: 10.1111/j.1600-079X.2012.01009.x.
    1. la Fleur SE, Kalsbeek A, Wortel J, van der Vliet J, Buijs RM. Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations. J Neuroendocrinol. 2001;13(12):1025–1032. doi: 10.1046/j.1365-2826.2001.00717.x.
    1. Mühlbauer E, Gross E, Labucay K, Wolgast S, Peschke E. Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose. Eur J Pharmacol. 2009;606(1–3):61–71. doi: 10.1016/j.ejphar.2009.01.029.
    1. Lissoni P, Barni S, Ardizzoia A, Tancini G, Conti A, Maestroni G. A randomized study with the pineal hormone melatonin versus supportive care alone in patients with brain metastases due to solid neoplasms. Cancer. 1994;73(3):699–701. doi: 10.1002/1097-0142(19940201)73:3<699::AID-CNCR2820730332>;2-L.
    1. Robinson WA, Dreiling L, Gonzalez R, Balmer C. The pineal gland and its hormones. Boston: Springer US; 1995. Treatment of human metastatic malignant melanoma with high dose oral melatonin; pp. 219–225.
    1. Lissoni P, Barni S, Mandalà M, Ardizzoia A, Paolorossi F, Vaghi M, et al. Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J Cancer. 1999;35(12):1688–1692. doi: 10.1016/S0959-8049(99)00159-8.
    1. Lissoni P, Barni S, Fossati V, Ardizzoia A, Cazzaniga M, Tancini G, et al. A randomized study of neuroimmunotherapy with low-dose subcutaneous interleukin-2 plus melatonin compared to supportive care alone in patients with untreatable metastatic solid tumour. Support Care Cancer. 1995;3(3):194–197. doi: 10.1007/BF00368890.
    1. Lissoni P, Meregalli S, Nosetto L, Barni S, Tancini G, Fossati V, et al. Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone. Oncology. 1996;53(1):43–46. doi: 10.1159/000227533.
    1. Lissoni P, Barni S, Meregalli S, Fossati V, Cazzaniga M, Esposti D, et al. Modulation of cancer endocrine therapy by melatonin: a phase II study of tamoxifen plus melatonin in metastatic breast cancer patients progressing under tamoxifen alone. Br J Cancer. 1995;71(4):854–856. doi: 10.1038/bjc.1995.164.
    1. Kanishi Y, Kobayashi Y, Noda S, Ishizuka B, Saito K. Differential growth inhibitory effect of melatonin on two endometrial cancer cell lines. J Pineal Res. 2000;28(4):227–233. doi: 10.1034/j.1600-079X.2000.280405.x.
    1. Petranka J, Baldwin W, Biermann J, Jayadev S, Barrett JC, Murphy E. The oncostatic action of melatonin in an ovarian carcinoma cell line. J Pineal Res. 1999;26(3):129–136. doi: 10.1111/j.1600-079X.1999.tb00574.x.
    1. Najafi M, Salehi E, Farhood B, Nashtaei MS, Hashemi Goradel N, Khanlarkhani N, et al. Adjuvant chemotherapy with melatonin for targeting human cancers: a review. J Cell Physiol. 2019;234(3):2356–2372. doi: 10.1002/jcp.27259.
    1. Najafi M, Shirazi A, Motevaseli E, Geraily G, Norouzi F, Heidari M, et al. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev. 2017;9(2):139–148. doi: 10.1007/s12551-017-0256-8.
    1. Wang Y, Jin B, Ai F, Duan C, Lu Y, Dong T, et al. The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: a meta-analysis of randomized controlled trials. Cancer Chemother Pharmacol. 2012;69(5):1213–1220. doi: 10.1007/s00280-012-1828-8.
    1. Shen Y-Q, Guerra-Librero A, Fernandez-Gil BI, Florido J, García-López S, Martinez-Ruiz L, et al. Combination of melatonin and rapamycin for head and neck cancer therapy: suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res. 2018;64(3):e12461. doi: 10.1111/jpi.12461.
    1. Lissoni P. Biochemotherapy with standard chemotherapies plus the pineal hormone melatonin in the treatment of advanced solid neoplasms. Pathol Biol. 2007;55(3–4):201–204. doi: 10.1016/j.patbio.2006.12.025.
    1. Alonso-González C, Menéndez-Menéndez J, González-González A, González A, Cos S, Martínez-Campa C. Melatonin enhances the apoptotic effects and modulates the changes in gene expression induced by docetaxel in MCF-7 human breast cancer cells. Int J Oncol. 2018;52(2):560–570.
    1. Reiter R, Rosales-Corral S, Tan D-X, Acuna-Castroviejo D, Qin L, Yang S-F, et al. Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci. 2017;18(4):843. doi: 10.3390/ijms18040843.
    1. Casado-Zapico S, Rodriguez-Blanco J, GarcÃa-Santos G, MartÃn V, Sánchez‐Sánchez AM, Antolín I, et al. Synergistic antitumor effect of melatonin with several chemotherapeutic drugs on human Ewing sarcoma cancer cells: potentiation of the extrinsic apoptotic pathway. J Pineal Res. 2010;48(1):72–80. doi: 10.1111/j.1600-079X.2009.00727.x.
    1. Menashe J. Managing and avoiding bortezomib toxicity. Commun Oncol. 2007;4(8):480–484. doi: 10.1016/S1548-5315(11)70481-8.
    1. Koşar PA, Nazıroğlu M, Övey İS, Çiğ B. Synergic effects of doxorubicin and melatonin on apoptosis and mitochondrial oxidative stress in MCF-7 breast cancer cells: involvement of TRPV1 channels. J Membr Biol. 2016;249(1–2):129–140. doi: 10.1007/s00232-015-9855-0.
    1. Kim J-H, Jeong S-J, Kim B, Yun S-M, Choi DY, Kim S-H. Melatonin synergistically enhances cisplatin-induced apoptosis via the dephosphorylation of ERK/p90 ribosomal S6 kinase/heat shock protein 27 in SK-OV-3 cells. J Pineal Res. 2012;52(2):244–252. doi: 10.1111/j.1600-079X.2011.00935.x.
    1. Slominski A, Pruski D. Melatonin inhibits proliferation and melanogenesis in rodent melanoma cells. Exp Cell Res. 1993;206(2):189–194. doi: 10.1006/excr.1993.1137.
    1. Cos S, Garcia-Bolado A, Sánchez-Barceló EJ. Direct antiproliferative effects of melatonin on two metastatic cell sublines of mouse melanoma (B16BL6 and PG19) Melanoma Res. 2001;11(2):197–201. doi: 10.1097/00008390-200104000-00016.
    1. Fischer T, Zmijewski M, Zbytek B, Sweatman T, Slominski R, Wortsman J, et al. Oncostatic effects of the indole melatonin and expression of its cytosolic and nuclear receptors in cultured human melanoma cell lines. Int J Oncol. 2006;29(3):665–672.
    1. Sardo FL, Muti P, Blandino G, Strano S. Melatonin and hippo pathway: is there existing cross-talk? Int J Mol Sci. 2017;18(9):1913. doi: 10.3390/ijms18091913.
    1. Santoro R, Marani M, Blandino G, Muti P, Strano S. Melatonin triggers p53Ser phosphorylation and prevents DNA damage accumulation. Oncogene. 2012;31(24):2931–2942. doi: 10.1038/onc.2011.469.
    1. Zhou Q, Gui S, Zhou Q, Wang Y. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway. PLoS One. 2014;9(7).
    1. Cos S, Fernández R, Güézmes A, Sánchez-Barceló EJ. Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res. 1998;58(19):4383–4390.
    1. Borin TF, Arbab AS, Gelaleti GB, Ferreira LC, Moschetta MG, Jardim-Perassi BV, et al. Melatonin decreases breast cancer metastasis by modulating rho-associated kinase protein-1 expression. J Pineal Res. 2016;60(1):3–15. doi: 10.1111/jpi.12270.
    1. Liu S, Goldstein RH, Scepansky EM, Rosenblatt M. Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Res. 2009;69(22):8742–8751. doi: 10.1158/0008-5472.CAN-09-1541.
    1. Tobioka H, Isomura H, Kokai Y, Tokunaga Y, Yamaguchi J, Sawada N. Occludin expression decreases with the progression of human endometrial carcinoma. Hum Pathol. 2004;35(2):159–164. doi: 10.1016/j.humpath.2003.09.013.
    1. Ferrara N, Houck K, Jakeman L, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev. 1992;13(1):18–32. doi: 10.1210/edrv-13-1-18.
    1. Salven P, Mänpää H, Orpana A, Alitalo K, Joensuu H. Serum vascular endothelial growth factor is often elevated in disseminated cancer. Clin Cancer Res. 1997;3(5):647–651.
    1. Fandrey J, Genius J. Reactive oxygen species as regulators of oxygen dependent gene expression. Adv Exp Med Biol. 2000;475:153–159. doi: 10.1007/0-306-46825-5_15.
    1. Dai M, Cui P, Yu M, Han J, Li H, Xiu R. Melatonin modulates the expression of VEGF and HIF-1α induced by CoCl 2 in cultured cancer cells. J Pineal Res. 2008;44(2):121–126. doi: 10.1111/j.1600-079X.2007.00498.x.
    1. Cheng J, Yang H, Gu C, Liu Y, Shao J, Zhu R, et al. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int J Mol Med. 2019;43:945–955.
    1. Wang R-X, Liu H, Xu L, Zhang H, Zhou R-X. Involvement of nuclear receptor RZR/RORγ in melatonin-induced HIF-1α inactivation in SGC-7901 human gastric cancer cells. Oncol Rep. 2015;34(5):2541–2546. doi: 10.3892/or.2015.4238.
    1. Wang R-X, Liu H, Xu L, Zhang H, Zhou R-X. Melatonin downregulates nuclear receptor RZR/RORγ expression causing growth-inhibitory and anti-angiogenesis activity in human gastric cancer cells in vitro and in vivo. Oncol Lett. 2016;12(2):897–903. doi: 10.3892/ol.2016.4729.
    1. Dong L, You S, Zhang Q, Osuka S, Devi NS, Kaluz S, et al. Arylsulfonamide 64B inhibits hypoxia/HIF-induced expression of c-met and CXCR4 and reduces primary tumor growth and metastasis of uveal melanoma. Clin Cancer Res. 2019;25(7):2206–2218. doi: 10.1158/1078-0432.CCR-18-1368.
    1. Schoenfield L, Janse S, Kline D, Aronow ME, Singh AD, Craven C, et al. Estrogen receptor is expressed in uveal melanoma: a potential target for therapy. Ocular Oncol Pathol. 2021;7(4):303–310. doi: 10.1159/000512174.
    1. Rato AG, Pedrero JG, Martínez MA, del Rio B, Lazo PS, Ramos S. Melatonin blocks the activation of estrogen receptor for DNA binding. FASEB J. 1999;13(8):857–868. doi: 10.1096/fasebj.13.8.857.
    1. Molis TM, Spriggs LL, Hill SM. Modulation of estrogen receptor mRNA expression by melatonin in MCF-7 human breast cancer cells. Mol Endocrinol. 1994;8(12):1681–1690.
    1. Lawson NO, Wee BEF, Blask DE, Castles CG, Spriggs LL, Hill SM. Melatonin decreases estrogen receptor expression in the medial preoptic area of inbred (LSH/SsLak) Golden hamsters. Biol Reprod. 1992;47(6):1082–1090. doi: 10.1095/biolreprod47.6.1082.
    1. Bouhoute A, Leclercq G. Modulation of estradiol and DNA binding to estrogen receptor upon association with calmodulin. Biochem Biophys Res Commun. 1995;208(2):748–755. doi: 10.1006/bbrc.1995.1401.
    1. Castoria G, Migliaccio A, Nola E, Auricchio F. In vitro interaction of estradiol receptor with Ca2+ −calmodulin. Mol Endocrinol. 1988;2(2):167–174. doi: 10.1210/mend-2-2-167.
    1. García Pedrero JM, del Rio B, Martínez-Campa C, Muramatsu M, Lazo PS, Ramos S. Calmodulin is a selective modulator of estrogen receptors. Mol Endocrinol. 2002;16(5):947–960. doi: 10.1210/mend.16.5.0830.
    1. Hu D-N, Roberts JE. Melatonin inhibits growth of cultured human uveal melanoma cells. Melanoma Res. 1997;7(1):27–31. doi: 10.1097/00008390-199702000-00005.
    1. Hu DN, McCormick SA, Roberts JE. Effects of melatonin, its precursors and derivatives on the growth of cultured human uveal melanoma cells. Melanoma Res. 1998;8(3):205–210. doi: 10.1097/00008390-199806000-00002.
    1. Roberts JE, Wiechmann AF, Hu D-N. Melatonin receptors in human uveal melanocytes and melanoma cells. J Pineal Res. 2002;28(3):165–171. doi: 10.1034/j.1600-079X.2001.280306.x.
    1. Alvarez-Artime A, Cernuda-Cernuda R, Francisco-Artime-Naveda CV, Gonzalez-Menendez P, Fernadez-Vega S, et al. Melatonin-induced cytoskeleton reorganization leads to inhibition of melanoma cancer cell proliferation. Int J Mol Sci. 2020;21(2):548. doi: 10.3390/ijms21020548.
    1. Gatti G, Lucini V, Dugnani S, Calastretti A, Spadoni G, Bedini A, et al. Antiproliferative and pro-apoptotic activity of melatonin analogues on melanoma and breast cancer cells. Oncotarget. 2017;8(40):68338–68353. doi: 10.18632/oncotarget.20124.
    1. Narita T, Kudo H. Effect of melatonin on B16 melanoma growth in athymic mice. Cancer Res. 1985;45(9):4175–4177.
    1. Gonzalez R, Sanchez A, Ferguson JA, Balmer C, Daniel C, Cohn A, et al. Melatonin therapy of advanced human malignant melanoma. Melanoma Res. 1991;1(4):237–244. doi: 10.1097/00008390-199111000-00003.
    1. Kane MA, Johnson A, Nash AE, Boose D, Mathai G, Balmer C, et al. Serum melatonin levels in melanoma patients after repeated oral administration. Melanoma Res. 1994;4(1):59–65. doi: 10.1097/00008390-199402000-00009.
    1. Seely D, Legacy M, Auer RC, Fazekas A, Delic E, Anstee C, et al. Adjuvant melatonin for the prevention of recurrence and mortality following lung cancer resection (AMPLCaRe): a randomized placebo controlled clinical trial. EClinicalMedicine. 2021;33.
    1. Hrushesky WJM, Lis CG, Levin RD, Grutsch JF, Birdsall T, Wood PA, et al. Daily evening melatonin prolongs survival among patients with advanced non-small-cell lung cancer. Biol Rhythm Res. 2021:1–15.
    1. Uner OE, See TRO, Szalai E, Grossniklaus HE, Stålhammar G. Estimation of the timing of BAP1 mutation in uveal melanoma progression. Sci Rep. 2021;11(1):8923. doi: 10.1038/s41598-021-88390-6.
    1. Kartini D, Taher A, Panigoro SS, Setiabudy R, Jusman SW, Haryana SM, et al. Effect of melatonin supplementation in combination with neoadjuvant chemotherapy to miR-210 and CD44 expression and clinical response improvement in locally advanced oral squamous cell carcinoma: a randomized controlled trial. J Egypt Natl Canc Inst. 2020;32(1):12. doi: 10.1186/s43046-020-0021-0.
    1. Lissoni P, Chilelli M, Villa S, Cerizza L, Tancini G. Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J Pineal Res. 2003;35(1):12–15. doi: 10.1034/j.1600-079X.2003.00032.x.
    1. Cerea G, Vaghi M, Ardizzoia A, Villa S, Bucovec R, Mengo S, et al. Biomodulation of cancer chemotherapy for metastatic colorectal cancer: a randomized study of weekly low-dose irinotecan alone versus irinotecan plus the oncostatic pineal hormone melatonin in metastatic colorectal cancer patients progressing on 5-fluorouracil-containing combinations. Anticancer Res. 2003;23(2C):1951–4.
    1. Berk L, Berkey B, Rich T, Hrushesky W, Blask D, Gallagher M, et al. Randomized phase II trial of high-dose melatonin and radiation therapy for RPA class 2 patients with brain metastases (RTOG 0119) Int J Radiat Oncol Biol Phys. 2007;68(3):852–857. doi: 10.1016/j.ijrobp.2007.01.012.
    1. Lissoni P, Barni S, Cattaneo G, Tancini G, Esposti G, Esposti D, et al. Clinical results with the pineal hormone melatonin in advanced cancer resistant to standard antitumor therapies. Oncology. 1991;48(6):448–450. doi: 10.1159/000226978.
    1. Lissoni P, Brivio O, Brivio F, Barni S, Tancini G, Crippa D, et al. Adjuvant therapy with the pineal hormone melatonin in patients with lymph node relapse due to malignant melanoma. J Pineal Res. 1996;21(4):239–242. doi: 10.1111/j.1600-079X.1996.tb00292.x.
    1. Lissoni P, Brivio F, Fumagalli L, Messina G, Vigoré L, Parolini D, et al. Neuroimmunomodulation in medical oncology: application of psychoneuroimmunology with subcutaneous low-dose IL-2 and the pineal hormone melatonin in patients with untreatable metastatic solid tumors. Anticancer Res. 2008;28(2B):1377–1381.
    1. Lissoni P, Bolis S, Brivio F, Fumagalli L. A phase II study of neuroimmunotherapy with subcutaneous low-dose IL-2 plus the pineal hormone melatonin in untreatable advanced hematologic malignancies. Anticancer Res. 2000;20(3B):2103–5.
    1. Yan J-J, Shen F, Wang K, Wu M-C. Patients with advanced primary hepatocellular carcinoma treated by melatonin and transcatheter arterial chemoembolization: a prospective study. Hepatobiliary Pancreat Dis Int. 2002;1(2):183–186.
    1. Stålhammar G. Forty-year prognosis after plaque brachytherapy of uveal melanoma. Sci Rep. 2020;10(1):11297. doi: 10.1038/s41598-020-68232-7.
    1. Augsburger JJ, Corrêa ZM, Shaikh AH. Effectiveness of treatments for metastatic uveal melanoma. Am J Ophthalmol. 2009;148(1):119–127. doi: 10.1016/j.ajo.2009.01.023.
    1. Nichols EE, Richmond A, Daniels AB. Micrometastatic dormancy in uveal melanoma: a comprehensive review of the evidence, mechanisms, and implications for future adjuvant therapies. Int Ophthalmol Clin. 2017;57(1):1–10. doi: 10.1097/IIO.0000000000000160.

Source: PubMed

3
Subscribe