Combined Dietary Nitrate and Exercise Intervention in Peripheral Artery Disease: Protocol Rationale and Design

Mary N Woessner, Mitch D VanBruggen, Carl F Pieper, Erin K O'Reilly, William E Kraus, Jason D Allen, Mary N Woessner, Mitch D VanBruggen, Carl F Pieper, Erin K O'Reilly, William E Kraus, Jason D Allen

Abstract

Background: Peripheral artery disease (PAD) is caused by atherosclerotic occlusions in the legs. It affects approximately 8-12 million people in the United States alone, one-third of whom suffer from intermittent claudication (IC), defined as ischemic leg pain that occurs with walking and improves with rest. Patients with IC suffer a markedly impaired quality of life and a high perception of disability. Improving pain-free walking time is a primary goal of rehabilitation in this population.

Objective: The nitric oxide (NO)-PAD trial is designed to compare the effects that 12 weeks of supervised exercise training, in combination with a high inorganic nitrate-content (beetroot [BR] juice) beverage or placebo (PL) beverage, has on clinical outcomes of exercise and functional capacity in two groups of PAD+IC patients: exercise training plus beetroot (EX+BR) and exercise training plus placebo (EX+PL). The primary aims of this randomized controlled, double-blind pilot study are to determine group differences following 12 weeks of EX+BR versus EX+PL in the changes for (1) exercise capacity: pain-free walking time (claudication onset time, COT), peak walk time (PWT), and maximal exercise capacity (peak oxygen uptake, VO2peak) during a maximal-graded cardiopulmonary exercise test (max CPX) and (2) functional capacity: 6-minute walk (6MW) distance. The secondary aims will provide mechanistic insights into the exercise outcome measures and will include (1) gastrocnemius muscle oxygenation during exercise via near-infrared spectroscopy (NIRS); (2) gastrocnemius muscle angiogenesis: capillaries per unit area and per muscle fiber, and relative fraction of type I, IIa, IIb, and IId/x fibers; and (3) vascular health/function via brachial artery flow-mediated dilation, lower-limb blood flow via plethysmography, and pulse wave velocity and reflection.

Methods: A total of 30 subjects between 40 and 80 years of age with PAD who are limited by IC will undergo exercise training 3 days per week for 12 weeks (ie, 36 sessions). They will be randomized to either the EX+BR or EX+PL group where participants will consume a beverage high in inorganic nitrate (4.2 mmol) or a low-nitrate placebo, respectively, 3 hours prior to each training session.

Results: Data collection from this study has been completed and is in the process of analysis and write-up. While the study is too underpowered-EX+BR, n=11; EX+PL, n=13-to determine between-group differences in the primary outcomes of COT, PWT, and 6MW, preliminary observations are promising with Cohen d effect sizes of medium to large.

Conclusions: Exercise training is currently the most effective therapy to increase functional capacity in PAD+IC. If the addition of inorganic nitrate to an exercise regimen elicits greater benefits, it may redefine the current standard of care for PAD+IC.

Trial registration: ClinicalTrials.gov NCT01684930; https://ichgcp.net/clinical-trials-registry/NCT01684930 (Archived by WebCite at http://www.webcitation.org/6raXFyEcP).

Keywords: exercise; intermittent claudication; nitrate; nitric oxide; nitrite; peripheral arterial disease.

Conflict of interest statement

Conflicts of Interest: None declared.

©Mary N Woessner, Mitch D VanBruggen, Carl F Pieper, Erin K O'Reilly, William E Kraus, Jason D Allen. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 03.10.2017.

Figures

Figure 1
Figure 1
Study design with visit timeline and corresponding assessments. 6MW: 6-minute walk; BR: beetroot juice; COT: claudication onset time; max CPX: maximal-graded cardiopulmonary exercise test; NIRS: near-infrared spectroscopy; PL: placebo juice; PWT: peak walk time; VO2peak: peak oxygen uptake.

References

    1. Askew CD, Parmenter B, Leicht AS, Walker PJ, Golledge J. Exercise & Sports Science Australia (ESSA) position statement on exercise prescription for patients with peripheral arterial disease and intermittent claudication. J Sci Med Sport. 2014 Nov;17(6):623–629. doi: 10.1016/j.jsams.2013.10.251.
    1. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WR, Olin JW, Puschett JB, Rosenfield KA, Sacks D, Stanley JC, Taylor LM, White CJ, White J, White RA, Antman EM, Smith SC, Adams CD, Anderson JL, Faxon DP, Fuster V, Gibbons RJ, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B, American Association for Vascular Surgery. Society for Vascular Surgery. Society for Cardiovascular Angiography and Interventions. Society for Vascular Medicine and Biology. Society of Interventional Radiology. ACC/AHA Task Force on Practice Guidelines Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease. American Association of Cardiovascular and Pulmonary Rehabilitation. National Heart‚ Lung‚ and Blood Institute. Society for Vascular Nursing. TransAtlantic Inter-Society Consensus. Vascular Disease Foundation ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): A collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006 Mar 21;113(11):e463–e654. doi: 10.1161/CIRCULATIONAHA.106.174526.
    1. Olsen PS, Gustafsen J, Rasmussen L, Lorentzen JE. Long-term results after arterial surgery for arteriosclerosis of the lower limbs in young adults. Eur J Vasc Surg. 1988 Feb;2(1):15–18.
    1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Roger VL, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics--2010 update: A report from the American Heart Association. Circulation. 2010 Feb 23;121(7):e46–e215. doi: 10.1161/CIRCULATIONAHA.109.192667.
    1. Milani RV, Lavie CJ. The role of exercise training in peripheral arterial disease. Vasc Med. 2007 Nov;12(4):351–358. doi: 10.1177/1358863X07083177.
    1. Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, Massaro JM, Lewis BA, Cerezo J, Oldenburg NC, Thum CC, Goldberg S, Jaff MR, Steffes MW, Comerota AJ, Ehrman J, Treat-Jacobson D, Walsh ME, Collins T, Badenhop DT, Bronas U, Hirsch AT. Supervised exercise versus primary stenting for claudication resulting from aortoiliac peripheral artery disease: Six-month outcomes from the Claudication: Exercise Versus Endoluminal Revascularization (CLEVER) study. Circulation. 2012 Jan 03;125(1):130–139. doi: 10.1161/CIRCULATIONAHA.111.075770.
    1. Patterson RB, Pinto B, Marcus B, Colucci A, Braun T, Roberts M. Value of a supervised exercise program for the therapy of arterial claudication. J Vasc Surg. 1997 Feb;25(2):312–318; discussion 318.
    1. Albright A, Franz M, Hornsby G, Kriska A, Marrero D, Ullrich I, Verity LS. American College of Sports Medicine position stand. Exercise and type 2 diabetes. Med Sci Sports Exerc. 2000 Jul;32(7):1345–1360.
    1. Boulé NG, Haddad E, Kenny G, Wells G, Sigal R. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: A meta-analysis of controlled clinical trials. JAMA. 2001 Sep 12;286(10):1218–1227.
    1. Fagard RH. Exercise characteristics and the blood pressure response to dynamic physical training. Med Sci Sports Exerc. 2001 Jun;33(6 Suppl):S484–S492; discussion S493.
    1. Leon AS, Rice T, Mandel S, Després JP, Bergeron J, Gagnon J, Rao DC, Skinner JS, Wilmore JH, Bouchard C. Blood lipid response to 20 weeks of supervised exercise in a large biracial population: The HERITAGE Family Study. Metabolism. 2000 Apr;49(4):513–520.
    1. Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud'homme D, Fortier M, Reid RD, Tulloch H, Coyle D, Phillips P, Jennings A, Jaffey J. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: A randomized trial. Ann Intern Med. 2007 Sep 18;147(6):357–369.
    1. Stefanick ML, Mackey S, Sheehan M, Ellsworth N, Haskell WL, Wood PD. Effects of diet and exercise in men and postmenopausal women with low levels of HDL cholesterol and high levels of LDL cholesterol. N Engl J Med. 1998 Jul 02;339(1):12–20. doi: 10.1056/NEJM199807023390103.
    1. Stewart K. Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: Plausible mechanisms for improving cardiovascular health. JAMA. 2002 Oct 02;288(13):1622–1631.
    1. Brevetti G, Schiano V, Chiariello M. Endothelial dysfunction: A key to the pathophysiology and natural history of peripheral arterial disease? Atherosclerosis. 2008 Mar;197(1):1–11. doi: 10.1016/j.atherosclerosis.2007.11.002.
    1. Pipinos II, Sharov VG, Shepard AD, Anagnostopoulos PV, Katsamouris A, Todor A, Filis KA, Sabbah HN. Abnormal mitochondrial respiration in skeletal muscle in patients with peripheral arterial disease. J Vasc Surg. 2003 Oct;38(4):827–832.
    1. Robbins JL, Jones WS, Duscha BD, Allen JD, Kraus WE, Regensteiner JG, Hiatt WR, Annex BH. Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol (1985) 2011 Jul;111(1):81–86. doi: 10.1152/japplphysiol.00141.2011.
    1. Pipinos II, Shepard AD, Anagnostopoulos PV, Katsamouris A, Boska MD. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle. J Vasc Surg. 2000 May;31(5):944–952. doi: 10.1067/mva.2000.106421.
    1. Duscha BD, Robbins JL, Jones WS, Kraus WE, Lye RJ, Sanders JM, Allen JD, Regensteiner JG, Hiatt WR, Annex BH. Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients. Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2742–2748. doi: 10.1161/ATVBAHA.111.230441.
    1. Allen JD, Stabler T, Kenjale A, Ham KL, Robbins JL, Duscha BD, Dobrosielski DA, Annex BH. Plasma nitrite flux predicts exercise performance in peripheral arterial disease after 3 months of exercise training. Free Radic Biol Med. 2010 Sep 15;49(6):1138–1144. doi: 10.1016/j.freeradbiomed.2010.06.033.
    1. Brevetti G, Silvestro A, Schiano V, Chiariello M. Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: Additive value of flow-mediated dilation to ankle-brachial pressure index. Circulation. 2003 Oct 28;108(17):2093–2098. doi: 10.1161/01.CIR.0000095273.92468.D9.
    1. de Haro Miralles J, Martínez-Aguilar E, Florez A, Varela C, Bleda S, Acin F. Nitric oxide: Link between endothelial dysfunction and inflammation in patients with peripheral arterial disease of the lower limbs. Interact Cardiovasc Thorac Surg. 2009 Jul;9(1):107–112. doi: 10.1510/icvts.2008.196428.
    1. Modin A, Björne H, Herulf M, Alving K, Weitzberg E, Lundberg JO. Nitrite-derived nitric oxide: A possible mediator of 'acidic-metabolic' vasodilation. Acta Physiol Scand. 2001 Jan;171(1):9–16. doi: 10.1046/j.1365-201X.2001.00771.x.
    1. Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, Arghandawi S, Pearl V, Benjamin N, Loukogeorgakis S, Macallister R, Hobbs AJ, Webb AJ, Ahluwalia A. Inorganic nitrate supplementation lowers blood pressure in humans: Role for nitrite-derived NO. Hypertension. 2010 Aug;56(2):274–281. doi: 10.1161/HYPERTENSIONAHA.110.153536.
    1. Tannenbaum SR, Weisman M, Fett D. The effect of nitrate intake on nitrite formation in human saliva. Food Cosmet Toxicol. 1976 Dec;14(6):549–552.
    1. Cermak NM, Gibala MJ, van Loon LJ. Nitrate supplementation's improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab. 2012 Feb;22(1):64–71.
    1. Kenjale AA, Ham KL, Stabler T, Robbins JL, Johnson JL, Vanbruggen M, Privette G, Yim E, Kraus WE, Allen JD. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol (1985) 2011 Jun;110(6):1582–1591. doi: 10.1152/japplphysiol.00071.2011.
    1. Lansley KE, Winyard PG, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Gilchrist M, Benjamin N, Jones AM. Dietary nitrate supplementation reduces the O2 cost of walking and running: A placebo-controlled study. J Appl Physiol (1985) 2011 Mar;110(3):591–600. doi: 10.1152/japplphysiol.01070.2010.
    1. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med. 2010 Jan 15;48(2):342–347. doi: 10.1016/j.freeradbiomed.2009.11.006.
    1. Pinna M, Roberto S, Milia R, Marongiu E, Olla S, Loi A, Migliaccio GM, Padulo J, Orlandi C, Tocco F, Concu A, Crisafulli A. Effect of beetroot juice supplementation on aerobic response during swimming. Nutrients. 2014 Jan 29;6(2):605–615. doi: 10.3390/nu6020605.
    1. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, Tarr J, Benjamin N, Jones AM. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol (1985) 2009 Oct;107(4):1144–1155. doi: 10.1152/japplphysiol.00722.2009.
    1. Wilkerson DP, Hayward GM, Bailey SJ, Vanhatalo A, Blackwell JR, Jones AM. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur J Appl Physiol. 2012 Dec;112(12):4127–4134. doi: 10.1007/s00421-012-2397-6.
    1. Peacock O, Tjønna AE, James P, Wisløff U, Welde B, Böhlke N, Smith A, Stokes K, Cook C, Sandbakk O. Dietary nitrate does not enhance running performance in elite cross-country skiers. Med Sci Sports Exerc. 2012 Nov;44(11):2213–2219. doi: 10.1249/MSS.0b013e3182640f48.
    1. Boorsma RK, Whitfield J, Spriet LL. Beetroot juice supplementation does not improve performance of elite 1500-m runners. Med Sci Sports Exerc. 2014 Dec;46(12):2326–2334. doi: 10.1249/MSS.0000000000000364.
    1. Porcelli S, Ramaglia M, Bellistri G, Pavei G, Pugliese L, Montorsi M, Rasica L, Marzorati M. Aerobic fitness affects the exercise performance responses to nitrate supplementation. Med Sci Sports Exerc. 2015 Aug;47(8):1643–1651. doi: 10.1249/MSS.0000000000000577.
    1. Coggan AR, Leibowitz JL, Spearie CA, Kadkhodayan A, Thomas DP, Ramamurthy S, Mahmood K, Park S, Waller S, Farmer M, Peterson LR. Acute dietary nitrate intake improves muscle contractile function in patients with heart failure: A double-blind, placebo-controlled, randomized trial. Circ Heart Fail. 2015 Sep;8(5):914–920. doi: 10.1161/CIRCHEARTFAILURE.115.002141.
    1. Eggebeen J, Kim-Shapiro DB, Haykowsky M, Morgan TM, Basu S, Brubaker P, Rejeski J, Kitzman DW. One week of daily dosing with beetroot juice improves submaximal endurance and blood pressure in older patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2016 Jun;4(6):428–437. doi: 10.1016/j.jchf.2015.12.013.
    1. Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, Doulias P, Ischiropoulos H, Townsend RR, Margulies KB, Cappola TP, Poole DC, Chirinos JA. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation. 2015 Jan 27;131(4):371–380; discussion 380. doi: 10.1161/CIRCULATIONAHA.114.012957.
    1. Berry MJ, Justus NW, Hauser JI, Case AH, Helms CC, Basu S, Rogers Z, Lewis MT, Miller GD. Dietary nitrate supplementation improves exercise performance and decreases blood pressure in COPD patients. Nitric Oxide. 2015 Aug 01;48:22–30. doi: 10.1016/j.niox.2014.10.007.
    1. Hirai DM, Zelt JT, Jones JH, Castanhas LG, Bentley RF, Earle W, Staples P, Tschakovsky ME, McCans J, O'Donnell DE, Neder JA. Dietary nitrate supplementation and exercise tolerance in patients with heart failure with reduced ejection fraction. Am J Physiol Regul Integr Comp Physiol. 2017 Jan 01;312(1):R13–R22. doi: 10.1152/ajpregu.00263.2016.
    1. Jungersten L, Edlund A, Petersson AS, Wennmalm A. Plasma nitrate as an index of nitric oxide formation in man: Analyses of kinetics and confounding factors. Clin Physiol. 1996 Jul;16(4):369–379.
    1. Gardner AW, Afaq A. Management of lower extremity peripheral arterial disease. J Cardiopulm Rehabil Prev. 2008;28(6):349–357. doi: 10.1097/HCR.0b013e31818c3b96.
    1. Allan RB, Delaney CL, Miller MD, Spark JI. A comparison of flow-mediated dilatation and peripheral artery tonometry for measurement of endothelial function in healthy individuals and patients with peripheral arterial disease. Eur J Vasc Endovasc Surg. 2013 Mar;45(3):263–269. doi: 10.1016/j.ejvs.2012.12.002.
    1. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: Testing and clinical relevance. Circulation. 2007 Mar 13;115(10):1285–1295. doi: 10.1161/CIRCULATIONAHA.106.652859.
    1. Gokce N, Keaney JF, Hunter LM, Watkins MT, Nedeljkovic ZS, Menzoian JO, Vita JA. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol. 2003 May 21;41(10):1769–1775.
    1. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, Hughes AD, Thurston H, O'Rourke M, Anglo-Scandinavian Cardiac Outcomes Trial Investigators. CAFE Steering Committee and Writing Committee Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: Principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006 Mar 07;113(9):1213–1225. doi: 10.1161/CIRCULATIONAHA.105.595496.
    1. Paraskevas KI, Kotsikoris I, Koupidis SA, Giannoukas AD, Mikhailidis DP. Ankle-brachial index: A marker of both peripheral arterial disease and systemic atherosclerosis as well as a predictor of vascular events. Angiology. 2010 Aug;61(6):521–523. doi: 10.1177/0003319710371620.
    1. Resnick HE, Lindsay RS, McDermott MM, Devereux RB, Jones KL, Fabsitz RR, Howard BV. Relationship of high and low ankle-brachial index to all-cause and cardiovascular disease mortality: The Strong Heart Study. Circulation. 2004 Feb 17;109(6):733–739. doi: 10.1161/01.CIR.0000112642.63927.54.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd edition. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.
    1. Kraemer HC, Mintz J, Noda A, Tinklenberg J, Yesavage JA. Caution regarding the use of pilot studies to guide power calculations for study proposals. Arch Gen Psychiatry. 2006 May;63(5):484–489. doi: 10.1001/archpsyc.63.5.484.
    1. Leon AC, Davis LL, Kraemer HC. The role and interpretation of pilot studies in clinical research. J Psychiatr Res. 2011 May;45(5):626–629. doi: 10.1016/j.jpsychires.2010.10.008.
    1. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol (Oxf) 2007 Sep;191(1):59–66. doi: 10.1111/j.1748-1716.2007.01713.x.
    1. Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain. A meta-analysis. JAMA. 1995 Sep 27;274(12):975–980.
    1. Watson L, Ellis B, Leng GC. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2008 Oct 08;(4):CD000990. doi: 10.1002/14651858.CD000990.pub2.

Source: PubMed

3
Subscribe