Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial

P Hoever, G Dorffner, H Beneš, T Penzel, H Danker-Hopfe, M J Barbanoj, G Pillar, B Saletu, O Polo, D Kunz, J Zeitlhofer, S Berg, M Partinen, C L Bassetti, B Högl, I O Ebrahim, E Holsboer-Trachsler, H Bengtsson, Y Peker, U-M Hemmeter, E Chiossi, G Hajak, J Dingemanse, P Hoever, G Dorffner, H Beneš, T Penzel, H Danker-Hopfe, M J Barbanoj, G Pillar, B Saletu, O Polo, D Kunz, J Zeitlhofer, S Berg, M Partinen, C L Bassetti, B Högl, I O Ebrahim, E Holsboer-Trachsler, H Bengtsson, Y Peker, U-M Hemmeter, E Chiossi, G Hajak, J Dingemanse

Abstract

The orexin system is a key regulator of sleep and wakefulness. In a multicenter, double-blind, randomized, placebo-controlled, two-way crossover study, 161 primary insomnia patients received either the dual orexin receptor antagonist almorexant, at 400, 200, 100, or 50 mg in consecutive stages, or placebo on treatment nights at 1-week intervals. The primary end point was sleep efficiency (SE) measured by polysomnography; secondary end points were objective latency to persistent sleep (LPS), wake after sleep onset (WASO), safety, and tolerability. Dose-dependent almorexant effects were observed on SE , LPS , and WASO . SE improved significantly after almorexant 400 mg vs. placebo (mean treatment effect 14.4%; P < 0.001). LPS (–18 min (P = 0.02)) and WASO (–54 min (P < 0.001)) decreased significantly at 400 mg vs. placebo. Adverse-event incidence was dose-related. Almorexant consistently and dose-dependently improved sleep variables. The orexin system may offer a new treatment approach for primary insomnia.

Trial registration: ClinicalTrials.gov NCT00640848.

Figures

Figure 1
Figure 1
Treatment effects of almorexant on objective sleep variables. Mean changes relative to placebo with 95% CIs. CI, confidence interval.
Figure 2
Figure 2
Treatment effects of almorexant on subjective sleep variables. Mean changes relative to placebo with 95% CIs. CI, confidence interval; SSA, self-rating sleep and awakening quality questionnaire.
Figure 3
Figure 3
Treatment effects of almorexant on next-day alertness and performance (reaction time test). Mean changes relative to placebo with 95% CIs. CI, confidence interval; VAS, visual analog scale.

References

    1. Harris G.C., Wimmer M., &, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437:556–559.
    1. Sakurai T. Roles of orexins and orexin receptors in central regulation of feeding behavior and energy homeostasis. CNS Neurol. Disord. Drug Targets. 2006;5:313–325.
    1. Anaclet al. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models J. Neurosci 2914423–14438.2009
    1. Kotz al. Orexin A mediation of time spent moving in rats: neural mechanisms Neuroscience 14229–36.2006
    1. Siegel J.M. Hypocretin (orexin): role in normal behavior and neuropathology. Annu. Rev. Psychol. 2004;55:125–148.
    1. Hagan al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat Proc. Natl. Acad. Sci. USA 9610911–10916.1999
    1. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat. Rev. Neurosci. 2007;8:171–181.
    1. de Lecea al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity Proc. Natl. Acad. Sci. USA 95322–327.1998
    1. Mignot al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias Arch. Neurol 591553–1562.2002
    1. Sakurai al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior Cell 92573–585.1998
    1. Kiyashchenko al. Release of hypocretin (orexin) during waking and sleep states J. Neurosci 225282–5286.2002
    1. Lee M.G., Hassani O.K., &, Jones B.E. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 2005;25:6716–6720.
    1. Salomon al. Diurnal variation of cerebrospinal fluid hypocretin-1 (Orexin-A) levels in control and depressed subjects Biol. Psychiatry 5496–104.2003
    1. Chemelli al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation Cell 98437–451.1999
    1. Lin al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene Cell 98365–376.1999
    1. Mieda M., Willie J.T., Hara J., Sinton C.M., Sakurai T., &, Yanagisawa M. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc. Natl. Acad. Sci. USA. 2004;101:4649–4654.
    1. Baumann C.R., &, Bassetti C.L. Hypocretins (orexins) and sleep-wake disorders. Lancet Neurol. 2005;4:673–682.
    1. Peyron al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains Nat. Med 6991–997.2000
    1. Dugovic al. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat J. Pharmacol. Exp. Ther 330142–151.2009
    1. Brisbare-Roch al. Promotion of sleep by targeting the orexin system in rats, dogs and humans Nat. Med 13150–155.2007
    1. Hoever al. Orexin receptor antagonism, a new sleep-promoting paradigm: an ascending single-dose study with almorexant Clin. Pharmacol. Ther 87593–600.2010
    1. Hilty D., Young J.S., Bourgeois J.A., Klein S., &, Hardin K.A. Algorithms for the assessment and management of insomnia in primary care. Patient Prefer. Adherence. 2009;3:9–20.
    1. National Institutes of Health NIH State of the Science Conference statement on manifestations and management of chronic insomnia in adults. Sleep. 2005;28:1049–1057.
    1. Partinen M, Hublin C.Epidemiology of sleep disorders Principles and Practice of Sleep Medicineeds. Kryger M.H., and, Dement W.626–647.Elsevier, New York; 2005
    1. Roth T., &, Roehrs T. Insomnia: epidemiology, characteristics, and consequences. Clin. Cornerstone. 2003;5:5–15.
    1. National Sleep Foundation. 2002 Sleep in America Poll < < > ( 2002
    1. Ohayon M.M. Nocturnal awakenings and comorbid disorders in the American general population. J. Psychiatr. Res. 2008;43:48–54.
    1. Schutte-Rodin S., Broch L., Buysse D., Dorsey C., &, Sateia M. Clinical guideline for the evaluation and management of chronic insomnia in adults. J. Clin. Sleep Med. 2008;4:487–504.
    1. Roth T. Prevalence, associated risks, and treatment patterns of insomnia. J. Clin. Psychiatry. 2005;66 (suppl. 9:10–13; quiz 42.
    1. Allen R.P., Mendels J., Nevins D.B., Chernik D.A., &, Hoddes E. Efficacy without tolerance or rebound insomnia for midazolam and temazepam after use for one to three months. J. Clin. Pharmacol. 1987;27:768–775.
    1. Holbrook A., Crowther R., Lotter A., &, Endeshaw Y. The role of benzodiazepines in the treatment of insomnia: meta-analysis of benzodiazepine use in the treatment of insomnia. J. Am. Geriatr. Soc. 2001;49:824–826.
    1. Scharf M.B., Roth P.B., Dominguez R.A., &, Ware J.C. Estazolam and flurazepam: a multicenter, placebo-controlled comparative study in outpatients with insomnia. J. Clin. Pharmacol. 1990;30:461–467.
    1. Dündar Y., Dodd S., Strobl J., Boland A., Dickson R., &, Walley T. Comparative efficacy of newer hypnotic drugs for the short-term management of insomnia: a systematic review and meta-analysis. Hum. Psychopharmacol. 2004;19:305–322.
    1. Hajak al. Rebound insomnia after hypnotic withdrawal in insomniac outpatients Eur. Arch. Psychiatry Clin. Neurosci 248148–156.1998
    1. Lieberman J.A. Update on the safety considerations in the management of insomnia with hypnotics: incorporating modified-release formulations into primary care. Prim. Care Companion J. Clin. Psychiatry. 2007;9:25–31.
    1. Buscemi al. The efficacy and safety of drug treatments for chronic insomnia in adults: a meta-analysis of RCTs J. Gen. Intern. Med 221335–1350.2007
    1. Zammit G., Erman M., Wang-Weigand S., Sainati S., Zhang J., &, Roth T. Evaluation of the efficacy and safety of ramelteon in subjects with chronic insomnia. J. Clin. Sleep Med. 2007;3:495–504.
    1. Erman al. A polysomnographic placebo-controlled evaluation of the efficacy and safety of eszopiclone relative to placebo and zolpidem in the treatment of primary insomnia J. Clin. Sleep Med 4229–234.2008
    1. Roth T., Soubrane C., Titeux L., &, Walsh J.K., Zoladult Study Group Efficacy and safety of zolpidem-MR: a double-blind, placebo-controlled study in adults with primary insomnia. Sleep Med. 2006;7:397–406.
    1. Zammit G. Comparative tolerability of newer agents for insomnia. Drug Saf. 2009;32:735–748.
    1. Eriksson K.S., Sergeeva O.A., Haas H.L., &, Selbach O. Orexins/hypocretins and aminergic systems. Acta Physiol. (Oxf) 2010;198:263–275.
    1. Rosenberg R.P. Sleep maintenance insomnia: strengths and weaknesses of current pharmacologic therapies. Ann. Clin. Psychiatry. 2006;18:49–56.
    1. Carskadon M, Dement W.Normal Human Sleep: An Overview4th edn. (ElsevierSaunders, Philadelphia, PA; 2005
    1. Redline S., Kirchner H.L., Quan S.F., Gottlieb D.J., Kapur V., &, Newman A. The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch. Intern. Med. 2004;164:406–418.
    1. Zammit G.K., McNabb L.J., Caron J., Amato D.A., &, Roth T. Efficacy and safety of eszopiclone across 6-weeks of treatment for primary insomnia. Curr. Med. Res. Opin. 2004;20:1979–1991.
    1. Griffiths R.R., &, Johnson M.W. Relative abuse liability of hypnotic drugs: a conceptual framework and algorithm for differentiating among compounds. J. Clin. Psychiatry. 2005;66 (suppl. 9:31–41.
    1. Soldatos C.R., Dikeos D.G., &, Whitehead A. Tolerance and rebound insomnia with rapidly eliminated hypnotics: a meta-analysis of sleep laboratory studies. Int. Clin. Psychopharmacol. 1999;14:287–303.
    1. Actelion/GlaxoSmithKline. Actelion and GSK Discontinue Clinical Development of Almorexant < < >. Accessed 28 January 2011.
    1. Saletu B., Kindshofer G., Anderer P., &, Grünberger J. Short-term sleep laboratory studies with cinolazepam in situational insomnia induced by traffic noise. Int. J. Clin. Pharmacol. Res. 1987;7:407–418.
    1. Anderer al. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database Neuropsychobiology 51115–133.2005
    1. Penzel al. Digital analysis and technical specifications J. Clin. Sleep Med 3109–120.2007
    1. Svetnik al. Evaluation of automated and semi-automated scoring of polysomnographic recordings from a clinical trial using zolpidem in the treatment of insomnia Sleep 301562–1574.2007
    1. Ploch T., Kemeny C., Gilbert G., Cassel W., &, Peter J.H. Significance of a screening questionnaire for diagnosis of sleep apnea] Pneumologie. 1993;47 (suppl. 1:108–111.
    1. Zung W.W. A self-rating depression scale. Arch. Gen. Psychiatry. 1965;12:63–70.
    1. Zung W.W. A rating instrument for anxiety disorders. Psychosomatics. 1971;12:371–379.
    1. Bond A, Lader M. The use of analogue scales in rating subjective feelings. Br. J. Med. Psychol. 1974;47:211–218.
    1. Gruenberger J. Maudrich, Vienna, Austria; 1977. Psychodiagnostik des Alkoholkranken. Ein methodischer Beitrag zur Bestimmung der Organizitaet in der Psychiatrie.
    1. Grünberger J., Linzmayer L., Dietzel M., &, Saletu B. The effect of biologically-active light on the noo- and thymopsyche and on psychophysiological variables in healthy volunteers. Int. J. Psychophysiol. 1993;15:27–37.
    1. Wechsler D. Psychological, New York; 1995. Manual for the Wechsler Adult Intelligence Scale.
    1. Dingemanse al. Proof-of-concept study in primary insomnia patients with ACT-078573, a dual orexin receptor antagonist Sleep Biol. Rhythms 5suppl. s1), A194 (2007

Source: PubMed

3
Subscribe