IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses

Andreas Schlitzer, Naomi McGovern, Pearline Teo, Teresa Zelante, Koji Atarashi, Donovan Low, Adrian W S Ho, Peter See, Amanda Shin, Pavandip Singh Wasan, Guillaume Hoeffel, Benoit Malleret, Alexander Heiseke, Samantha Chew, Laura Jardine, Harriet A Purvis, Catharien M U Hilkens, John Tam, Michael Poidinger, E Richard Stanley, Anne B Krug, Laurent Renia, Baalasubramanian Sivasankar, Lai Guan Ng, Matthew Collin, Paola Ricciardi-Castagnoli, Kenya Honda, Muzlifah Haniffa, Florent Ginhoux, Andreas Schlitzer, Naomi McGovern, Pearline Teo, Teresa Zelante, Koji Atarashi, Donovan Low, Adrian W S Ho, Peter See, Amanda Shin, Pavandip Singh Wasan, Guillaume Hoeffel, Benoit Malleret, Alexander Heiseke, Samantha Chew, Laura Jardine, Harriet A Purvis, Catharien M U Hilkens, John Tam, Michael Poidinger, E Richard Stanley, Anne B Krug, Laurent Renia, Baalasubramanian Sivasankar, Lai Guan Ng, Matthew Collin, Paola Ricciardi-Castagnoli, Kenya Honda, Muzlifah Haniffa, Florent Ginhoux

Abstract

Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24(+)CD64(-) DCs and contaminating CSF-1R-dependent CD24(-)CD64(+) macrophages. Functionally, loss of CD24(+)CD11b(+) DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24(+)CD11b(+) DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies.

Copyright © 2013 Elsevier Inc. All rights reserved.

Figures

Figure 1
Figure 1
Lung CD11b+ DCs Are Heterogeneous (A) Flow cytometry of mouse lung cell suspension. Gating strategy to identify CD103+ DCs (green gate), CD11b+CD24+ DCs (blue gate), and CD11b+CD64+ MACs (red gate) is shown. (B and C) Histograms show relative expression of the indicated markers on lung DCs and MACs (B). Flow cytometry of mouse LLN cell suspension. Gating strategy as described in (A) was used in (C). Representative data from n > 5 shown for (A)–(C). (D) Morphology of purified lung DCs and MACs visualized by GIEMSA staining and SEM. (E) Percentage proliferation of lung DCs and MACs indicated by fluorescence levels in Fucci mice (mean fluorescent+ cells ± SEM, pooled results of three experiments, n = 6). See also Figure S1.
Figure 2
Figure 2
Lung CD11b+CD24+CD64− Cells Are Bona Fide DCs, whereas CD11b+CD24−CD64+ Cells Are Macrophages (A) Relative expression of Flt3 and Csf-1r mRNA by lung DCs and MACs (n = 3, mean ± SEM). (B–G) Percentage of CD45.2 and CD45.1 DCs and MACs in the indicated tissues from mixed BM chimeric mice (CD45.2 WT: CD45.1 WT; CD45.2 Flt3−/−: CD45.1 WT (B, D, F); CD45.2 Csf1r−/−: CD45.1 WT (C, E, G). (H) Bar graph shows mean ± SEM of the indicated cell populations (pooled results of four experiments, n = 12). Percentage proliferation of OTII cells stimulated by OVA-loaded lung DCs and MACs (n = 3, mean ± SEM). See also Figure S2.
Figure 3
Figure 3
Lung CD11b+ DCs Are IRF4 Dependent (A) Hierarchical clustering of murine spleen and lung DC/MAC populations based on differential expression of selected genes (SAM algorithm, delta = 2.6). (B) Irf4 mRNA expression by lung DCs and MACs (n = 3, mean). (C) Relative expression of IRF4 by flow cytometry on lung CD11b+ DCs and MACs (n = 3). (D–F) Percentage of CD45.2 and CD45.1 DCs and MACs in the indicated tissues from indicated mixed BM chimeric mice. Bar graphs show mean ± SEM of the indicated cell populations (pooled results of four experiments, n = 10, mean ± SEM). See also Figure S2 and Table S1.
Figure 4
Figure 4
Gut Lamina Propria CD24+CD103+CD11b+ DCs Are Dependent on IRF4 (A) Flow cytometry of gut LP to identify CD103+ DCs, CD103+CD11b+ DCs, CD103-CD11b+ DCs, and CD11b+ MACs (n = 5). (B) Flow cytometry of MLN to identify DCs and MACs as described in (A), (n = 5). (C, D, F, and G) Percentage of CD45.2 and CD45.1 DCs and MACs in the indicated tissues from indicated BM chimeric mice. (E) Pooled results from four experiments, n = 10 (mean ± SEM). IRF4 expression on SI-LP DCs and MACs by flow cytometry (n = 3). See also Figure S3.
Figure 5
Figure 5
CD11b+CD24+ DCs in Lung and SI Control Th17 Responses (A–D) Expression of indicated genes in lung DCs and MACs by microarray (A), by Q-PCR in lung (B), and Q-PCR and nanostring in SI-LP (C and D) DCs and MACs (mean ± SEM, n = 3). (E) Percentage of IL-17A and IFN-γ expressing CD3+CD4+ T cells in steady state from lung, lymph node, SI-LP, and MLN of WT (white bars) and Itgax-cre Irf4fl/fl (black bars) mice (mean ± SEM, pooled results of two experiments, n = 10). (F) Same as (E) after A. fumigatus challenge. (F) Representative dot plot shown left and bar graphs show composite data (mean ± SEM, pooled results of four experiments, n = 20). (G) CFUs from homogenized lung tissue of either WT (white bars) or Itgax-cre Irf4fl/fl (black bars) mice 7 days after intranasal infection with A. fumigatus (mean ± SEM, pooled results of four experiments, n = 20). (H) Same than (F) with Langerin-DTR mice (white bars) or Langerin-DTR mice injected with DT (black bars) (mean ± SEM, pooled results of two experiments, n = 10). See also Figures S4 and S5.
Figure 6
Figure 6
Transcriptomic Alignment of Mouse IRF4-Dependent CD11b+ DCs with Human CD1c+ DCs (A) Scatterplot of mouse CD11b+ DCs versus CD11b+ MACs and human CD1c+ DCs and CD14+ monocytes. Common DEG for mouse CD11b+ DCs and human CD1c+ DCs are highlighted in red, whereas common DEG for mouse CD11b+ MACs and CD14+ monocytes are highlighted in green. All genes depicted are regulated < 1.5-fold. (B) Analysis strategy depicting the number of DEG, which are shared and not shared between mouse CD11b+ DCs, mouse CD11b+ MACs, human CD1c+ DCs, and human CD14+ monocytes. (C) Heatmap showing expression in CD14+ monocytes and CD1c+ DCs of common DEG identified between mouse CD11b+ DCs and human CD1c+ DCs. (D) Same than (C) with mouse CD11b+ DCs and CD11b+ MACs. See also Figure S7 and Tables S2 and S3.
Figure 7
Figure 7
Human IRF4 Expressing CD1c+ DCs Induce IL-17 T Helper Response Flow cytometry of peripheral blood and mechanically dispersed lung. Gating strategy used to identify three myeloid DC subsets within Lin−HLA-DR+ fraction (CD123+ pDCs were excluded from the CD14−CD16− fraction): (1) CD14+ monocytes (red gate), (2) CD14−CD1c+CD141− DCs (blue gate), (3) CD14−CD1c−CD141+ DCs (green gate). (A) Representative from ten blood and three lung donors are shown. Relative expression of indicated markers by CD14+ monocytes/DCs (red), CD1c+ DCs (blue), and CD141+ DCs (green). (B) Representative data from three blood and lung donors are shown. (C) Same as (B) for IRF4 expression compared to isotype (black) from indicated tissues. Representative data from three blood, lung, and two SI donors are shown. mRNA expression of IL-23p19 by freshly sorted human DC subsets from lung (n = 3, mean ± SEM). (D) Expression normalized to IL-23p19 mRNA expression in unstimulated CD141+ DCs. Intracellular IFN-γ and IL-17A expression by PMA/Ionomycin restimulated CD4+ T cells cultured with autologous lung indicated DC subsets pulsed with A. fumigatus hyphae. (E) Representative dot plot with percentage of total IL-17+ cells and composite results shown in bar graph (n = 4, mean ± SEM fold increase [%+DC/%-DC]).

References

    1. Acosta-Rodriguez E.V., Rivino L., Geginat J., Jarrossay D., Gattorno M., Lanzavecchia A., Sallusto F., Napolitani G. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 2007;8:639–646.
    1. Aggarwal S., Ghilardi N., Xie M.H., de Sauvage F.J., Gurney A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 2003;278:1910–1914.
    1. Ahern P.P., Schiering C., Buonocore S., McGeachy M.J., Cua D.J., Maloy K.J., Powrie F. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010;33:279–288.
    1. Annacker O., Coombes J.L., Malmstrom V., Uhlig H.H., Bourne T., Johansson-Lindbom B., Agace W.W., Parker C.M., Powrie F. Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J. Exp. Med. 2005;202:1051–1061.
    1. Bachem A., Güttler S., Hartung E., Ebstein F., Schaefer M., Tannert A., Salama A., Movassaghi K., Opitz C., Mages H.W. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 2010;207:1273–1281.
    1. Bajaña S., Roach K., Turner S., Paul J., Kovats S. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J. Immunol. 2012;189:3368–3377.
    1. Banchereau J., Briere F., Caux C., Davoust J., Lebecque S., Liu Y.J., Pulendran B., Palucka K. Immunobiology of dendritic cells. Annu. Rev. Immunol. 2000;18:767–811.
    1. Barnden M.J., Allison J., Heath W.R., Carbone F.R. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 1998;76:34–40.
    1. Bedoret D., Wallemacq H., Marichal T., Desmet C., Quesada Calvo F., Henry E., Closset R., Dewals B., Thielen C., Gustin P. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest. 2009;119:3723–3738.
    1. Bogunovic M., Ginhoux F., Helft J., Shang L., Hashimoto D., Greter M., Liu K., Jakubzick C., Ingersoll M.A., Leboeuf M. Origin of the lamina propria dendritic cell network. Immunity. 2009;31:513–525.
    1. Caton M.L., Smith-Raska M.R., Reizis B. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J. Exp. Med. 2007;204:1653–1664.
    1. Cerovic V., Houston S.A., Scott C.L., Aumeunier A., Yrlid U., Mowat A.M., Milling S.W. Intestinal CD103(-) dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol. 2012;6:104–113.
    1. Chamilos G., Ganguly D., Lande R., Gregorio J., Meller S., Goldman W.E., Gilliet M., Kontoyiannis D.P. Generation of IL-23 producing dendritic cells (DCs) by airborne fungi regulates fungal pathogenicity via the induction of T(H)-17 responses. PLoS ONE. 2010;5:e12955.
    1. Crozat K., Guiton R., Contreras V., Feuillet V., Dutertre C.A., Ventre E., Vu Manh T.P., Baranek T., Storset A.K., Marvel J. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J. Exp. Med. 2010;207:1283–1292.
    1. Denning T.L., Norris B.A., Medina-Contreras O., Manicassamy S., Geem D., Madan R., Karp C.L., Pulendran B. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J. Immunol. 2011;187:733–747.
    1. Dillon S.M., Rogers L.M., Howe R., Hostetler L.A., Buhrman J., McCarter M.D., Wilson C.C. Human intestinal lamina propria CD1c+ dendritic cells display an activated phenotype at steady state and produce IL-23 in response to TLR7/8 stimulation. J. Immunol. 2010;184:6612–6621.
    1. Gautier E.L., Shay T., Miller J., Greter M., Jakubzick C., Ivanov S., Helft J., Chow A., Elpek K.G., Gordonov S., Immunological Genome Consortium Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 2012;13:1118–1128.
    1. GeurtsvanKessel C.H., Willart M.A., van Rijt L.S., Muskens F., Kool M., Baas C., Thielemans K., Bennett C., Clausen B.E., Hoogsteden H.C. Clearance of influenza virus from the lung depends on migratory langerin+CD11b- but not plasmacytoid dendritic cells. J. Exp. Med. 2008;205:1621–1634.
    1. Ginhoux F., Liu K., Helft J., Bogunovic M., Greter M., Hashimoto D., Price J., Yin N., Bromberg J., Lira S.A. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 2009;206:3115–3130.
    1. Haniffa M., Shin A., Bigley V., McGovern N., Teo P., See P., Wasan P.S., Wang X.N., Malinarich F., Malleret B. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 2012;37:60–73.
    1. Hansel A., Gunther C., Ingwersen J., Starke J., Schmitz M., Bachmann M., Meurer M., Rieber E.P., Schakel K. Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J Allergy Clin Immunol. 2011;127:787–794. e781–789.
    1. Hashimoto D., Miller J., Merad M. Dendritic cell and macrophage heterogeneity in vivo. Immunity. 2011;35:323–335.
    1. Hohl T.M., Feldmesser M. Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot. Cell. 2007;6:1953–1963.
    1. Ivanov I.I., Atarashi K., Manel N., Brodie E.L., Shima T., Karaoz U., Wei D., Goldfarb K.C., Santee C.A., Lynch S.V. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–498.
    1. Kinnebrew M.A., Buffie C.G., Diehl G.E., Zenewicz L.A., Leiner I., Hohl T.M., Flavell R.A., Littman D.R., Pamer E.G. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity. 2012;36:276–287.
    1. Klein U., Casola S., Cattoretti G., Shen Q., Lia M., Mo T., Ludwig T., Rajewsky K., Dalla-Favera R. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 2006;7:773–782.
    1. Langlet C., Tamoutounour S., Henri S., Luche H., Ardouin L., Grégoire C., Malissen B., Guilliams M. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 2012;188:1751–1760.
    1. Lewis K.L., Caton M.L., Bogunovic M., Greter M., Grajkowska L.T., Ng D., Klinakis A., Charo I.F., Jung S., Gommerman J.L. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity. 2011;35:780–791.
    1. Liu K., Victora G.D., Schwickert T.A., Guermonprez P., Meredith M.M., Yao K., Chu F.F., Randolph G.J., Rudensky A.Y., Nussenzweig M. In vivo analysis of dendritic cell development and homeostasis. Science. 2009;324:392–397.
    1. Martinou J.C., Youle R.J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell. 2011;21:92–101.
    1. Miller J.C., Brown B.D., Shay T., Gautier E.L., Jojic V., Cohain A., Pandey G., Leboeuf M., Elpek K.G., Helft J., Immunological Genome Consortium Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 2012;13:888–899.
    1. Moreira A.P., Cavassani K.A., Ismailoglu U.B., Hullinger R., Dunleavy M.P., Knight D.A., Kunkel S.L., Uematsu S., Akira S., Hogaboam C.M. The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A. J. Clin. Invest. 2011;121:4420–4432.
    1. Palucka K., Banchereau J., Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity. 2010;33:464–478.
    1. Plantinga M., Guilliams M., Vanheerswynghels M., Deswarte K., Branco-Madeira F., Toussaint W., Vanhoutte L., Neyt K., Killeen N., Malissen B. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 2013;38:322–335.
    1. Poulin L.F., Salio M., Griessinger E., Anjos-Afonso F., Craciun L., Chen J.L., Keller A.M., Joffre O., Zelenay S., Nye E. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J. Exp. Med. 2010;207:1261–1271.
    1. Romani L. Immunity to fungal infections. Nat. Rev. Immunol. 2004;4:1–23.
    1. Sakaue-Sawano A., Kurokawa H., Morimura T., Hanyu A., Hama H., Osawa H., Kashiwagi S., Fukami K., Miyata T., Miyoshi H. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008;132:487–498.
    1. Sallusto F., Zielinski C.E., Lanzavecchia A. Human Th17 subsets. Eur. J. Immunol. 2012;42:2215–2220.
    1. Satpathy A.T., Kc W., Albring J.C., Edelson B.T., Kretzer N.M., Bhattacharya D., Murphy T.L., Murphy K.M. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 2012;209:1135–1152.
    1. Schlitzer A., Heiseke A.F., Einwächter H., Reindl W., Schiemann M., Manta C.P., See P., Niess J.H., Suter T., Ginhoux F., Krug A.B. Tissue-specific differentiation of a circulating CCR9- pDC-like common dendritic cell precursor. Blood. 2012;119:6063–6071.
    1. Schulz O., Jaensson E., Persson E.K., Liu X., Worbs T., Agace W.W., Pabst O. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 2009;206:3101–3114.
    1. Segura E., Touzot M., Bohineust A., Cappuccio A., Chiocchia G., Hosmalin A., Dalod M., Soumelis V., Amigorena S. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity. 2013;38:336–348.
    1. Shaffer A.L., Emre N.C., Lamy L., Ngo V.N., Wright G., Xiao W., Powell J., Dave S., Yu X., Zhao H. IRF4 addiction in multiple myeloma. Nature. 2008;454:226–231.
    1. Shortman K., Naik S.H. Steady-state and inflammatory dendritic-cell development. Nat. Rev. Immunol. 2007;7:19–30.
    1. Steinman R.M., Hawiger D., Nussenzweig M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 2003;21:685–711.
    1. Suzuki S., Honma K., Matsuyama T., Suzuki K., Toriyama K., Akitoyo I., Yamamoto K., Suematsu T., Nakamura M., Yui K., Kumatori A. Critical roles of interferon regulatory factor 4 in CD11bhighCD8alpha- dendritic cell development. Proc. Natl. Acad. Sci. USA. 2004;101:8981–8986.
    1. Tamoutounour S., Henri S., Lelouard H., de Bovis B., de Haar C., van der Woude C.J., Woltman A.M., Reyal Y., Bonnet D., Sichien D. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur J Immunol. 2012;42:3150–3166.
    1. Tamura T., Tailor P., Yamaoka K., Kong H.J., Tsujimura H., O’Shea J.J., Singh H., Ozato K. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J. Immunol. 2005;174:2573–2581.
    1. Uematsu S., Fujimoto K., Jang M.H., Yang B.G., Jung Y.J., Nishiyama M., Sato S., Tsujimura T., Yamamoto M., Yokota Y. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 2008;9:769–776.
    1. Zeng R., Oderup C., Yuan R., Lee M., Habtezion A., Hadeiba H., Butcher E.C. Retinoic acid regulates the development of a gut-homing precursor for intestinal dendritic cells. Mucosal Immunol. 2012 Published online December 12, 2012.
    1. Zielinski C.E., Mele F., Aschenbrenner D., Jarrossay D., Ronchi F., Gattorno M., Monticelli S., Lanzavecchia A., Sallusto F. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature. 2012;484:514–518.

Source: PubMed

3
Subscribe