Hypoxia-Inducible Factor (HIF) as a Target for Novel Therapies in Rheumatoid Arthritis

Susan Hua, Thilani H Dias, Susan Hua, Thilani H Dias

Abstract

Hypoxia is an important micro-environmental characteristic of rheumatoid arthritis (RA). Hypoxia-inducible factors (HIF) are key transcriptional factors that are highly expressed in RA synovium to regulate the adaptive responses to this hypoxic milieu. Accumulating evidence supports hypoxia and HIFs in regulating a number of important pathophysiological characteristics of RA, including synovial inflammation, angiogenesis, and cartilage destruction. Experimental and clinical data have confirmed the upregulation of both HIF-1α and HIF-2α in RA. This review will focus on the differential expression of HIFs within the synovial joint and its functional behavior in different cell types to regulate RA progression. Potential development of new therapeutic strategies targeting HIF-regulated pathways at sites of disease in RA will also be addressed.

Keywords: angiogenesis; cartilage degradation; hypoxia; hypoxia-inducible factor; inflammation; rheumatoid arthritis; synovitis; targeted therapy.

Figures

Figure 1
Figure 1
Role of hypoxia-regulated HIF-α transcription factors in inflammation and destruction of the RA joint. HIF-α can directly modulate the expression of mediators that are involved in synovitis, angiogenesis, cartilage destruction, and bone erosion. This can also influence the composition of the cellular infiltrate in the synovial tissue and perpetuate the progression of disease.

References

    1. Abeles A. M., Pillinger M. H. (2006). The role of the synovial fibroblast in rheumatoid arthritis: cartilage destruction and the regulation of matrix metalloproteinases. Bull. NYU Hosp. Jt. Dis. 64, 20–24.
    1. Ahn J. K., Koh E. M., Cha H. S., Lee Y. S., Kim J., Bae E. K., et al. . (2008). Role of hypoxia-inducible factor-1alpha in hypoxia-induced expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford) 47, 834–839. 10.1093/rheumatology/ken086
    1. Akhavani M. A., Madden L., Buysschaert I., Sivakumar B., Kang N., Paleolog E. M. (2009). Hypoxia upregulates angiogenesis and synovial cell migration in rheumatoid arthritis. Arthritis Res. Ther. 11, R64. 10.1186/ar2689
    1. Azizi G., Boghozian R., Mirshafiey A. (2014). The potential role of angiogenic factors in rheumatoid arthritis. Int. J. Rheum. Dis. 17, 369–383. 10.1111/1756-185X.12280
    1. Ban H. S., Uto Y., Won M., Nakamura H. (2016). Hypoxia-inducible factor (HIF) inhibitors: a patent survey (2011-2015). Expert Opin. Ther. Pat. 26, 309–322. 10.1517/13543776.2016.1146252
    1. Ben-Yosef Y., Lahat N., Shapiro S., Bitterman H., Miller A. (2002). Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ. Res. 90, 784–791. 10.1161/01.RES.0000015588.70132.DC
    1. Biniecka M., Canavan M., McGarry T., Gao W., McCormick J., Cregan S., et al. . (2016). Dysregulated bioenergetics: a key regulator of joint inflammation. Ann. Rheum. Dis. 10.1136/annrheumdis-2015-208476. [Epub ahead of print].
    1. Bosco M. C., Delfino S., Ferlito F., Battaglia F., Puppo M., Gregorio A., et al. . (2008). Hypoxic synovial environment and expression of macrophage inflammatory protein 3gamma/CCL20 in juvenile idiopathic arthritis. Arthritis Rheum. 58, 1833–1838. 10.1002/art.23516
    1. Brentano F., Kyburz D., Schorr O., Gay R., Gay S. (2005). The role of Toll-like receptor signalling in the pathogenesis of arthritis. Cell. Immunol. 233, 90–96. 10.1016/j.cellimm.2005.04.018
    1. Brouwer E., Gouw A. S., Posthumus M. D., van Leeuwen M. A., Boerboom A. L., Bijzet J., et al. . (2009). Hypoxia inducible factor-1-alpha (HIF-1alpha) is related to both angiogenesis and inflammation in rheumatoid arthritis. Clin. Exp. Rheumatol. 27, 945–951.
    1. Canning M. T., Postovit L. M., Clarke S. H., Graham C. H. (2001). Oxygen-mediated regulation of gelatinase and tissue inhibitor of metalloproteinases-1 expression by invasive cells. Exp. Cell Res. 267, 88–94. 10.1006/excr.2001.5243
    1. Cha H. S., Ahn K. S., Jeon C. H., Kim J., Song Y. W., Koh E. M. (2003). Influence of hypoxia on the expression of matrix metalloproteinase-1, -3 and tissue inhibitor of metalloproteinase-1 in rheumatoid synovial fibroblasts. Clin. Exp. Rheumatol. 21, 593–598.
    1. Charbonneau M., Harper K., Grondin F., Pelmus M., McDonald P. P., Dubois C. M. (2007). Hypoxia-inducible factor mediates hypoxic and tumor necrosis factor alpha-induced increases in tumor necrosis factor-alpha converting enzyme/ADAM17 expression by synovial cells. J. Biol. Chem. 282, 33714–33724. 10.1074/jbc.M704041200
    1. Chen Z., Zhang T., Wu B., Zhang X. (2016). Insights into the therapeutic potential of hypoxia-inducible factor-1alpha small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes. Int. J. Nanomed. 11, 991–1002. 10.2147/IJN.S101872
    1. Cramer T., Yamanishi Y., Clausen B. E., Förster I., Pawlinski R., Mackman N., et al. . (2003). HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657. 10.1016/S0092-8674(03)00154-5
    1. De Bandt M., Ben Mahdi M. H., Ollivier V., Grossin M., Dupuis M., Gaudry M., et al. . (2003). Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J. Immunol. 171, 4853–4859. 10.4049/jimmunol.171.9.4853
    1. del Rey M. J., Izquierdo E., Caja S., Usategui A., Santiago B., Galindo M., et al. . (2009). Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia-inducible transcription factor 1alpha/vascular endothelial growth factor-mediated pathway in immunodeficient mice. Arthritis Rheum. 60, 2926–2934. 10.1002/art.24844
    1. Distler J. H., Wenger R. H., Gassmann M., Kurowska M., Hirth A., Gay S., et al. . (2004). Physiologic responses to hypoxia and implications for hypoxia-inducible factors in the pathogenesis of rheumatoid arthritis. Arthritis Rheum. 50, 10–23. 10.1002/art.11425
    1. Dorman G., Cseh S., Hajdu I., Barna L., Konya D., Kupai K., et al. . (2010). Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Drugs 70, 949–964. 10.2165/11318390-000000000-00000
    1. Elshabrawy H. A., Chen Z., Volin M. V., Ravella S., Virupannavar S., Shahrara S. (2015). The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 18, 433–448. 10.1007/s10456-015-9477-2
    1. Eltzschig H. K., Carmeliet P. (2011). Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665. 10.1056/NEJMra0910283
    1. Fan L., Li J., Yu Z., Dang X., Wang K. (2014). The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration. Biomed Res. Int. 2014:239356. 10.1155/2014/239356
    1. Fava R. A., Olsen N. J., Spencer-Green G., Yeo K. T., Yeo T. K., Berse B., et al. . (1994). Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J. Exp. Med. 180, 341–346. 10.1084/jem.180.1.341
    1. Gaber T., Dziurla R., Tripmacher R., Burmester G. R., Buttgereit F. (2005). Hypoxia inducible factor (HIF) in rheumatology: low O2! See what HIF can do! Ann. Rheum. Dis. 64, 971–980. 10.1136/ard.2004.031641
    1. Gao W., Sweeney C., Connolly M., Kennedy A., Ng C. T., McCormick J., et al. . (2012). Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis. Arthritis Rheum. 64, 2104–2113. 10.1002/art.34397
    1. Giatromanolaki A., Sivridis E., Maltezos E., Athanassou N., Papazoglou D., Gatter K. C., et al. . (2003). Upregulated hypoxia inducible factor-1α and -2α pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res. Ther. 5, R193–R201. 10.1186/ar756
    1. Gibson J. S., Milner P. I., White R., Fairfax T. P., Wilkins R. J. (2008). Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis. Pflugers Arch. 455, 563–573. 10.1007/s00424-007-0310-7
    1. Goh F. G., Midwood K. S. (2012). Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology (Oxford) 51, 7–23. 10.1093/rheumatology/ker257
    1. Goldring S. R. (2003). Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology 42(Suppl. 2), ii11–ii16. 10.1093/rheumatology/keg327
    1. Greer S. N., Metcalf J. L., Wang Y., Ohh M. (2012). The updated biology of hypoxia-inducible factor. EMBO J. 31, 2448–2460. 10.1038/emboj.2012.125
    1. Hardy W., Wright F., Hawtree S., Fearon U., Veale D., Perretti M., et al. (2014). Hypoxia-inducible factor 2a regulates macrophage function in rheumatoid arthritis. Ann. Rheum. Dis. 73, 174 10.1136/annrheumdis-2014-eular.4257
    1. Harris A. L. (2002). Hypoxia ? A key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38. 10.1038/nrc704
    1. Hitchon C., Wong K., Ma G., Reed J., Lyttle D., El-Gabalawy H. (2002). Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum. 46, 2587–2597. 10.1002/art.10520
    1. Hitchon C. A., El-Gabalawy H. S. (2004). Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 6, 265–278. 10.1186/ar1447
    1. Hitchon C. A., El-Gabalawy H. S. (2011). The synovium in rheumatoid arthritis. Open Rheum. J. 5, 107–114. 10.2174/1874312901105010107
    1. Hollander A. P., Corke K. P., Freemont A. J., Lewis C. E. (2001). Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum. 44, 1540–1544. 10.1002/1529-0131(200107)44:7<1540::AID-ART277>;2-7
    1. Hu F., Liu H., Xu L., Li Y., Liu X., Shi L., et al. . (2016). Hypoxia-inducible factor-1alpha perpetuates synovial fibroblast interactions with T cells and B cells in rheumatoid arthritis. Eur. J. Immunol. 46, 742–751. 10.1002/eji.201545784
    1. Hu F., Li Y., Zheng L., Shi L., Liu H., Zhang X., et al. . (2014a). Toll-like receptors expressed by synovial fibroblasts perpetuate Th1 and Th17 cell responses in rheumatoid arthritis. PLoS ONE 9:e100266. 10.1371/journal.pone.0100266
    1. Hu F., Mu R., Zhu J., Shi L., Li Y., Liu X., et al. . (2014b). Hypoxia and hypoxia-inducible factor-1α provoke toll-like receptor signalling-induced inflammation in rheumatoid arthritis. Ann. Rheum. Dis. 73, 928–936. 10.1136/annrheumdis-2012-202444
    1. Hu F., Shi L., Mu R., Zhu J., Li Y., Ma X., et al. . (2013). Hypoxia-inducible factor-1α and interleukin 33 Form a regulatory circuit to perpetuate the inflammation in rheumatoid arthritis. PLoS ONE 8:e72650. 10.1371/journal.pone.0072650
    1. Huang Q. Q., Pope R. M. (2009). The role of toll-like receptors in rheumatoid arthritis. Curr. Rheumatol. Rep. 11, 357–364. 10.1007/s11926-009-0051-z
    1. Huber L. C., Distler O., Tarner I., Gay R. E., Gay S., Pap T. (2006). Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford) 45, 669–675. 10.1093/rheumatology/kel065
    1. Huh Y. H., Lee G., Lee K. B., Koh J. T., Chun J. S., Ryu J. H. (2015). HIF-2alpha-induced chemokines stimulate motility of fibroblast-like synoviocytes and chondrocytes into the cartilage-pannus interface in experimental rheumatoid arthritis mouse models. Arthritis Res. Ther. 17, 302. 10.1186/s13075-015-0816-x
    1. Ikeda E. (2005). Cellular response to tissue hypoxia and its involvement in disease progression. Pathol. Int. 55, 603–610. 10.1111/j.1440-1827.2005.01877.x
    1. Imtiyaz H. Z., Simon M. C. (2010). Hypoxia-inducible factors as essential regulators of inflammation. Curr. Top. Microbiol. Immunol. 345, 105–120. 10.1007/82_2010_74
    1. Jeon C. H., Ahn J. K., Chai J. Y., Kim H. J., Bae E. K., Park S. H., et al. . (2008). Hypoxia appears at pre-arthritic stage and shows co-localization with early synovial inflammation in collagen induced arthritis. Clin. Exp. Rheumatol. 26, 646–648.
    1. Kavanaugh A. F., Davis L. S., Jain R. I., Nichols L. A., Norris S. H., Lipsky P. E. (1996). A phase I/II open label study of the safety and efficacy of an anti-ICAM-1 (intercellular adhesion molecule-1; CD54) monoclonal antibody in early rheumatoid arthritis. J. Rheumatol. 23, 1338–1344.
    1. Kavanaugh A. F., Schulze-Koops H., Davis L. S., Lipsky P. E. (1997). Repeat treatment of rheumatoid arthritis patients with a murine anti-intercellular adhesion molecule 1 monoclonal antibody. Arthritis Rheum. 40, 849–853. 10.1002/art.1780400511
    1. Kennedy A., Chin Teck N., Biniecka M., Saber T., Taylor C., O'sullivan J., et al. . (2010). Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis Rheum. 62, 711. 10.1002/art.27287
    1. Kim S. Y., Choi Y. J., Joung S. M., Lee B. H., Jung Y. S., Lee J. Y. (2010). Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor. Immunology 129, 516–524. 10.1111/j.1365-2567.2009.03203.x
    1. Kinne R. W., Bräuer R., Stuhlmüller B., Palombo-Kinne E., Burmester G.-R. (2000). Macrophages in rheumatoid arthritis. Arthritis Res. 2, 189–202. 10.1186/ar86
    1. Koch A. E., Harlow L. A., Haines G. K., Amento E. P., Unemori E. N., Wong W. L., et al. . (1994). Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J. Immunol. 152, 4149–4156.
    1. Konisti S., Kiriakidis S., Paleolog E. M. (2012). Hypoxia–a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat. Rev. Rheumatol. 8, 153–162. 10.1038/nrrheum.2011.205
    1. Lafont J. E., Talma S., Hopfgarten C., Murphy C. L. (2008). Hypoxia promotes the differentiated human articular chondrocyte phenotype through SOX9-dependent and-independent pathways. J. Biol. Chem. 283, 4778–4786. 10.1074/jbc.M707729200
    1. Lafont J. E., Talma S., Murphy C. L. (2007). Hypoxia-inducible factor 2alpha is essential for hypoxic induction of the human articular chondrocyte phenotype. Arthritis Rheum. 56, 3297–3306. 10.1002/art.22878
    1. Lautenbach M., Millrose M., Langner I., Eisenschenk A. (2013). Results of Mannerfelt wrist arthrodesis for rheumatoid arthritis in relation to the position of the fused wrist. Int. Orthop. 37, 2409–2413. 10.1007/s00264-013-2063-6
    1. Lee S. Y., Yoon B. Y., Kim J. I., Heo Y. M., Woo Y. J., Park S. H., et al. . (2014). Interleukin-17 increases the expression of Toll-like receptor 3 via the STAT3 pathway in rheumatoid arthritis fibroblast-like synoviocytes. Immunology 141, 353–361. 10.1111/imm.12196
    1. Lee Y. A., Choi H. M., Lee S. H., Hong S. J., Yang H. I., Yoo M. C., et al. . (2012). Hypoxia differentially affects IL-1beta-stimulated MMP-1 and MMP-13 expression of fibroblast-like synoviocytes in an HIF-1alpha-dependent manner. Rheumatology (Oxford) 51, 443–450. 10.1093/rheumatology/ker327
    1. Lee Y. A., Kim J. Y., Hong S. J., Lee S. H., Yoo M. C., Kim K. S., et al. . (2007). Synovial proliferation differentially affects hypoxia in the joint cavities of rheumatoid arthritis and osteoarthritis patients. Clin. Rheumatol. 26, 2023–2029. 10.1007/s10067-007-0605-2
    1. Li G., Zhang Y., Qian Y., Zhang H., Guo S., Sunagawa M., et al. . (2013c). Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-kappaB/HIF-1alpha pathway. Mol. Immunol. 53, 227–236. 10.1016/j.molimm.2012.08.018
    1. Li G. F., Qin Y. H., Du P. Q. (2015). Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1alpha signaling. Life Sci. 136, 67–72. 10.1016/j.lfs.2015.06.019
    1. Li G. Q., Zhang Y., Liu D., Qian Y. Y., Zhang H., Guo S. Y., et al. . (2013a). PI3 kinase/Akt/HIF-1alpha pathway is associated with hypoxia-induced epithelial-mesenchymal transition in fibroblast-like synoviocytes of rheumatoid arthritis. Mol. Cell. Biochem. 372, 221–231. 10.1007/s11010-012-1463-z
    1. Li G.-Q., Liu D., Zhang Y., Qian Y.-Y., Zhu Y.-D., Guo S.-Y., et al. . (2013b). Anti-invasive effects of celastrol in hypoxia-induced fibroblast-like synoviocyte through suppressing of HIF-1α/CXCR4 signaling pathway. Int. Immunopharmacol. 17, 1028–1036. 10.1016/j.intimp.2013.10.006
    1. Liu Y., Tao J., Li Y., Yang J., Yu Y., Wang M., et al. . (2009). Targeting hypoxia-inducible factor-1alpha with Tf-PEI-shRNA complex via transferrin receptor-mediated endocytosis inhibits melanoma growth. Mol. Ther. 17, 269–277. 10.1038/mt.2008.266
    1. Lu J., Kasama T., Kobayashi K., Yoda Y., Shiozawa F., Hanyuda M., et al. . (2000). Vascular endothelial growth factor expression and regulation of murine collagen-induced arthritis. J. Immunol. 164, 5922–5927. 10.4049/jimmunol.164.11.5922
    1. Lund-Olesen K. (1970). Oxygen tension in synovial fluids. Arthritis Rheum. 13, 769–776. 10.1002/art.1780130606
    1. Manabe H., Nasu Y., Komiyama T., Furumatsu T., Kitamura A., Miyazawa S., et al. . (2008). Inhibition of histone deacetylase down-regulates the expression of hypoxia-induced vascular endothelial growth factor by rheumatoid synovial fibroblasts. Inflamm. Res. 57, 4–10. 10.1007/s00011-007-7036-z
    1. Mariani E., Pulsatelli L., Facchini A. (2014). Signaling pathways in cartilage repair. Int. J. Mol. Sci. 15, 8667–8698. 10.3390/ijms15058667
    1. Maruotti N., Cantatore F. P., Ribatti D. (2014). Putative effects of potentially anti-angiogenic drugs in rheumatic diseases. Eur. J. Clin. Pharmacol. 70, 135–140. 10.1007/s00228-013-1605-6
    1. McInnes I. B., Schett G. (2011). The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219. 10.1056/NEJMra1004965
    1. Mobasheri A., Richardson S., Mobasheri R., Shakibaei M., Hoyland J. A. (2005). Hypoxia inducible factor-1 and facilitative glucose transporters GLUT1 and GLUT3: putative molecular components of the oxygen and glucose sensing apparatus in articular chondrocytes. Histol. Histopathol. 20, 1327–1338.
    1. Nicholas S. A., Sumbayev V. V. (2009). The involvement of hypoxia-inducible factor 1 alpha in Toll-like receptor 7/8-mediated inflammatory response. Cell Res. 19, 973–983. 10.1038/cr.2009.44
    1. Ospelt C., Brentano F., Rengel Y., Stanczyk J., Kolling C., Tak P. P., et al. . (2008). Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum. 58, 3684–3692. 10.1002/art.24140
    1. Otero M., Goldring M. B. (2007). Cells of the synovium in rheumatoid arthritis. Chondrocytes. Arthritis Res. Ther. 9, 220. 10.1186/ar2292
    1. Paleolog E. M. (2002). Angiogenesis in rheumatoid arthritis. Arthritis Res. 4(Suppl. 3), S81–S90. 10.1186/ar575
    1. Pap T., Müller-Ladner U., Gay R. E., Gay S. (2000b). Fibroblast biology: role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res. 2, 361–367. 10.1186/ar113
    1. Pap T., Shigeyama Y., Kuchen S., Fernihough J. K., Simmen B., Gay R. E., et al. . (2000a). Differential expression pattern of membrane-type matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum. 43, 1226–1232. 10.1002/1529-0131(200006)43:6<1226::AID-ANR5>;2-4
    1. Peters C. L., Morris C. J., Mapp P. I., Blake D. R., Lewis C. E., Winrow V. R. (2004). The transcription factors hypoxia-inducible factor 1alpha and Ets-1 colocalize in the hypoxic synovium of inflamed joints in adjuvant-induced arthritis. Arthritis Rheum. 50, 291–296. 10.1002/art.11473
    1. Pfander D., Cramer T., Schipani E., Johnson R. S. (2003). HIF-1alpha controls extracellular matrix synthesis by epiphyseal chondrocytes. J. Cell Sci. 116(Pt 9), 1819–1826. 10.1242/jcs.00385
    1. Pfander D., Cramer T., Swoboda B. (2005). Hypoxia and HIF-1α in osteoarthritis. Int. Orthop. 29, 6–9. 10.1007/s00264-004-0618-2
    1. Phillips R. M. (2016). Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother. Pharmacol. 77, 441–457. 10.1007/s00280-015-2920-7
    1. Post D. E., Sandberg E. M., Kyle M. M., Devi N. S., Brat D. J., Xu Z., et al. . (2007). Targeted cancer gene therapy using a hypoxia inducible factor dependent oncolytic adenovirus armed with interleukin-4. Cancer Res. 67, 6872–6881. 10.1158/0008-5472.CAN-06-3244
    1. Ryu J. H., Chae C. S., Kwak J. S., Oh H., Shin Y., Huh Y. H., et al. . (2014). Hypoxia-inducible factor-2alpha is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biol. 12:e1001881. 10.1371/journal.pbio.1001881
    1. Santiago B., Calonge E., Del Rey M. J., Gutierrez-Canas I., Izquierdo E., Usategui A., et al. (2011). CXCL12 gene expression is upregulated by hypoxia and growth arrest but not by inflammatory cytokines in rheumatoid synovial fibroblasts. Cytokine 53, 184–190. 10.1016/j.cyto.2010.06.006
    1. Schipani E., Ryan H. E., Didrickson S., Kobayashi T., Knight M., Johnson R. S. (2001). Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 15, 2865–2876. 10.1101/gad.934301
    1. Semenza G. L. (1998). Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr. Opin. Genet. Dev. 8, 588–594. 10.1016/S0959-437X(98)80016-6
    1. Sercombe L., Veerati T., Moheimani F., Wu S. Y., Sood A. K., Hua S. (2015). Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 6:286. 10.3389/fphar.2015.00286
    1. Shankar J., Thippegowda P. B., Kanum S. A. (2009). Inhibition of HIF-1α activity by BP-1 ameliorates adjuvant induced arthritis in rats. Biochem. Biophys. Res. Commun. 387, 223–228. 10.1016/j.bbrc.2009.01.086
    1. Smith M. D. (2011). The Normal Synovium. Open Rheumatol. J. 5, 100–106. 10.2174/1874312901105010100
    1. Szekanecz Z., Koch A. E. (2007). Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol. 19, 289–295. 10.1097/BOR.0b013e32805e87ae
    1. Szekanecz Z., Koch A. E. (2008). Vascular involvement in rheumatic diseases: ‘vascular rheumatology’. Arthritis Res. Ther. 10, 224. 10.1186/ar2515
    1. Tal R., Shaish A., Rofe K., Feige E., Varda-Bloom N., Afek A., et al. . (2008). Endothelial-targeted gene transfer of hypoxia-inducible factor-1alpha augments ischemic neovascularization following systemic administration. Mol. Ther. 16, 1927–1936. 10.1038/mt.2008.191
    1. Taylor P. C., Sivakumar B. (2005). Hypoxia and angiogenesis in rheumatoid arthritis. Curr. Opin. Rheumatol. 17, 293–298. 10.1097/01.bor.0000155361.83990.5b
    1. Thabet M. M., Huizinga T. W. (2006). Drug evaluation: apratastat, a novel TACE/MMP inhibitor for rheumatoid arthritis. Curr. Opin. Invest. Drugs 7, 1014–1019.
    1. Thoms B. L., Dudek K. A., Lafont J. E., Murphy C. L. (2013). Hypoxia promotes the production and inhibits the destruction of human articular cartilage. Arthritis Rheum. 65, 1302–1312. 10.1002/art.37867
    1. Thornton R. D., Lane P., Borghaei R. C., Pease E. A., Caro J., Mochan E. (2000). Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. Biochem. J. 350(Pt 1), 307–3012. 10.1042/bj3500307
    1. Villalvilla A., Gomez R., Roman-Blas J. A., Largo R., Herrero-Beaumont G. (2014). SDF-1 signaling: a promising target in rheumatic diseases. Expert Opin. Ther. Targets 18, 1077–1087. 10.1517/14728222.2014.930440
    1. Wang Y., Saad M., Pakunlu R. I., Khandare J. J., Garbuzenko O. B., Vetcher A. A., et al. . (2008). Nonviral nanoscale-based delivery of antisense oligonucleotides targeted to hypoxia-inducible factor 1 alpha enhances the efficacy of chemotherapy in drug-resistant tumor. Clin. Cancer Res. 14, 3607–3616. 10.1158/1078-0432.CCR-07-2020
    1. Westra J., Brouwer E., van Roosmalen I. A., Doornbos-van der Meer B., van Leeuwen M. A., Posthumus M. D., et al. . (2010). Expression and regulation of HIF-1alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor. BMC Musculoskelet. Disord. 11:61. 10.1186/1471-2474-11-61
    1. Wigerup C., Påhlman S., Bexell D. (2016). Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 10.1016/j.pharmthera.2016.04.009. [Epub ahead of print].
    1. Williams R. O., Feldmann M., Maini R. N. (2000). Cartilage destruction and bone erosion in arthritis: the role of tumour necrosis factor alpha. Ann. Rheum. Dis. 59(Suppl. 1), i75–i80. 10.1136/ard.59.suppl_1.i75
    1. Xu D., Jiang H. R., Kewin P., Li Y., Mu R., Fraser A. R., et al. . (2008). IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc. Natl. Acad. Sci. U.S.A. 105, 10913–10918. 10.1073/pnas.0801898105
    1. Xu L., Feng X., Tan W., Gu W., Guo D., Zhang M., et al. . (2013). IL-29 enhances Toll-like receptor-mediated IL-6 and IL-8 production by the synovial fibroblasts from rheumatoid arthritis patients. Arthritis Res. Ther. 15, R170. 10.1186/ar4357
    1. Zhang F.-J., Luo W., Lei G.-H. (2015). Role of HIF-1α and HIF-2α in osteoarthritis. Joint Bone Spine 82, 144–147. 10.1016/j.jbspin.2014.10.003

Source: PubMed

3
Subscribe