Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease

Lijuan Hou, Wei Chen, Xiaoli Liu, Decai Qiao, Fu-Ming Zhou, Lijuan Hou, Wei Chen, Xiaoli Liu, Decai Qiao, Fu-Ming Zhou

Abstract

Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients.

Keywords: basal ganglia; dendritic spine; dopamine; glutamate; medium spiny neuron; neuroprotection; neurotrophic factor; physical activity.

Figures

Figure 1
Figure 1
Diagram illustrating that PD has a long presymptomatic period and that exercise may reduce PD risk, delay the appearance of the symptoms, and slow the disease progression. ? indicates that the illustrated possibilities are suggested by indirect evidence but direct evidence is lacking. The diagram is based on Kish et al. (1988), Hornykiewicz (2001), Braak et al. (2004), Gaig and Tolosa (2009), Hawkes et al. (2010), Savica et al. (2010), Coelho and Ferreira (2012), Burke and O'Malley (2013), Goedert et al. (2013), Kordower et al. (2013), Del Tredici and Braak (2016), Noyce et al. (2016) and Salat et al. (2016). The curves and values are approximate because published data are incomplete and variable. Original illustration of Fu-Ming Zhou.
Figure 2
Figure 2
(A) Diagram of the nigrostriatal system and the basal ganglia circuitry of the human brain. From Zhou et al. (2003) with permission. (B) Photograph of a monkey brain coronal section showing the intense DA innervation in the striatum (the putamen and the caudate nucleus) indicated by DAT immunostain. Modified from Lewis et al. (2001) with permission.
Figure 3
Figure 3
Exercise-induced neuroprotection of DA neurons in the SNc and DA axon terminals in the striatum. (A) TH immunostain showing DA axonal innervation under the four conditions. (B) TH immunostain showing DA neurons in the substantia nigra under the four conditions. Scale bar in (B4): 0.1 mm for (A) and 0.05 mm for (B). Modified from Shi et al. (2017) with permission.
Figure 4
Figure 4
Exercise protects MSN dendritic spines. (A) Example dendritic spines under the four conditions. Scale bar, 5 μm. (B) Quantification of dendritic spines under the four conditions. Modified from Chen et al. (2015a) with permission.
Figure 5
Figure 5
Summary diagram showing that exercise triggers trophic factor production that in turn induce neuroprotection and neurorestoration. IT, intratelencephalically projecting cortical neurons; PT, pyramidal tract projecting cortical neurons. Original artwork of Fu-Ming Zhou.

References

    1. Aebischer P., Ridet J. (2001). Recombinant proteins for neurodegenerative diseases: the delivery issue. Trends Neurosci. 24, 533–540. 10.1016/S0166-2236(00)01899-3
    1. Aguiar A. S., Jr., Duzzioni M., Remor A. P., Tristão F. S., Matheus F. C., Raisman-Vozari R., et al. . (2016a). Moderate-intensity physical exercise protects against experimental 6-hydroxydopamine-induced hemiparkinsonism through Nrf2-antioxidant response element pathway. Neurochem. Res. 41, 64–72. 10.1007/s11064-015-1709-8
    1. Aguiar A. S., Jr., Lopes S. C., Tristão F. S., Rial D., de Oliveira G., da Cunha C., et al. . (2016b). Exercise improves cognitive impairment and dopamine metabolism in MPTP-treated mice. Neurotox. Res. 29, 118–125. 10.1007/s12640-015-9566-4
    1. Aguiar A. S., Jr., Tristão F. S., Amar M., Chevarin C., Glaser V., de Paula Martins R., et al. . (2014). Six weeks of voluntary exercise don't protect C57BL/6 mice against neurotoxicity of MPTP and MPP(+). Neurotox. Res. 25, 147–152. 10.1007/s12640-013-9412-5
    1. Ahlskog J. E. (2011). Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology 77, 288–294. 10.1212/WNL.0b013e318225ab66
    1. Ai Y., Markesbery W., Zhang Z., Grondin R., Elseberry D., Gerhardt G. A., et al. . (2003). Intraputamenal infusion of GDNF in aged rhesus monkeys: distribution and dopaminergic effects. J. Comp. Neurol. 461, 250–61. 10.1002/cne.10689
    1. Airaksinen M. S., Saarma M. (2002). The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3, 383–394. 10.1038/nrn812
    1. Alberts J. L., Phillips M., Lowe M. J., Frankemolle A., Thota A., Beall E. B., et al. . (2016). Cortical and motor responses to acute forced exercise in Parkinson's disease. Parkinsonism Relat Disord. 24, 56–62. 10.1016/j.parkreldis.2016.01.015
    1. Allen S. J., Watson J. J., Shoemark D. K., Barua N. U., Patel N. K. (2013). GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther. 138, 155–175. 10.1016/j.pharmthera.2013.01.004
    1. Altar C. A., Cai N., Bliven T., Juhasz M., Conner J. M., Acheson A. L., et al. . (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389, 856–860. 10.1038/39885
    1. Amano S., Nocera J. R., Vallabhajosula S., Juncos J. L., Gregor R. J., Waddell D. E., et al. . (2013). The effect of Tai Chi exercise on gait initiation and gait performance in persons with Parkinson's disease. Parkinsonism Relat. Disord. 19, 955–960. 10.1016/j.parkreldis.2013.06.007
    1. André V. M., Cepeda C., Cummings D. M., Jocoy E. L., Fisher Y. E., William Yang X., et al. . (2010). Dopamine modulation of excitatory currents in the striatum is dictated by the expression of D1 or D2 receptors and modified by endocannabinoids. Eur. J. Neurosci. 31, 14–28. 10.1111/j.1460-9568.2009.07047.x
    1. Angelucci F., Piermaria J., Gelfo F., Shofany J., Tramontano M., Fiore M., et al. . (2016). The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson's disease subjects. Can. J. Physiol. Pharmacol. 94, 455–461. 10.1139/cjpp-2015-0322
    1. Anglade P., Mouatt-Prigent A., Agid Y., Hirsch E. (1996). Synaptic plasticity in the caudate nucleus of patients with Parkinson's disease. Neurodegeneration 5, 121–18. 10.1006/neur.1996.0018
    1. Arnold J. C., Salvatore M. F. (2016). Exercise-mediated increase in nigral tyrosine hydroxylase is accompanied by increased nigral GFR-α1 and EAAC1 expression in aging rats. ACS Chem. Neurosci. 7, 227–239. 10.1021/acschemneuro.5b00282
    1. Aron L., Klein R. (2011). Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci. 34, 88–100. 10.1016/j.tins.2010.11.001
    1. Bagga V., Dunnett S. B., Fricker R. A. (2015). The 6-OHDA mouse model of Parkinson's disease - Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behav. Brain Res. 288, 107–117. 10.1016/j.bbr.2015.03.058
    1. Baker S. A., Stanford L. E., Brown R. E., Hagg T. (2005). Maturation but not survival of dopaminergic nigrostriatal neurons is affected in developing and aging BDNF-deficient mice. Brain Res. 1039, 177–188. 10.1016/j.brainres.2005.01.052
    1. Ballard P. A., Tetrud J. W., Langston J. W. (1985). Permanent human parkinsonism due to 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 35, 949–956. 10.1212/WNL.35.7.949
    1. Baquet Z. C., Bickford P. C., Jones K. R. (2005). Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J. Neurosci. 25, 6251–6259. 10.1523/JNEUROSCI.4601-04.2005
    1. Baquet Z. C., Gorski J. A., Jones K. R. (2004). Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci. 24, 4250–4258. 10.1523/JNEUROSCI.3920-03.2004
    1. Barde Y. A., Edgar D., Thoenen H. (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1, 549–553.
    1. Bartus R. T., Johnson E. M., Jr. (2017a). Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: Where have we been and what have we learned? Neurobiol. Dis. 97, 156–168. 10.1016/j.nbd.2016.03.027
    1. Bartus R. T., Johnson E. M., Jr. (2017b). Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: Where do we stand and where must we go next? Neurobiol. Dis. 97, 169–178. 10.1016/j.nbd.2016.03.026
    1. Batchelor P. E., Liberatore G. T., Porritt M. J., Donnan G. A., Howells D. W. (2000). Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum. Eur. J. Neurosci. 12, 3462–3468. 10.1046/j.1460-9568.2000.00239.x
    1. Bateup H. S., Santini E., Shen W., Birnbaum S., Valjent E., Surmeier D. J., et al. . (2010). Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc. Natl. Acad. Sci. U.S.A. 107, 14845–14850. 10.1073/pnas.1009874107
    1. Baydyuk M., Xu B. (2014). BDNF signaling and survival of striatal neurons. Front. Cell. Neurosci. 8:254. 10.3389/fncel.2014.00254
    1. Baydyuk M., Nguyen M. T., Xu B. (2011a). Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Exp. Neurol. 228, 118–125. 10.1016/j.expneurol.2010.12.018
    1. Baydyuk M., Russell T., Liao G. Y., Zang K., An J. J., Reichardt L. F., et al. . (2011b). TrkB receptor controls striatal formation by regulating the number of newborn striatal neurons. Proc. Natl. Acad. Sci. U.S.A. 108, 1669–1674. 10.1073/pnas.1004744108
    1. Beall E. B., Lowe M. J., Alberts J. L., Frankemolle A. M., Thota A. K., Shah C., et al. . (2013). The effect of forced-exercise therapy for Parkinson's disease on motor cortex functional connectivity. Brain Connect. 3, 190–198. 10.1089/brain.2012.0104
    1. Beck K. D., Valverde J., Alexi T., Poulsen K., Moffat B., Vandlen R. A., et al. . (1995). Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373, 339–341. 10.1038/373339a0
    1. Benisty S., Boissiere F., Faucheux B., Agid Y., Hirsch E. C. (1998). trkB messenger RNA expression in normal human brain and in the substantia nigra of parkinsonian patients: an in situ hybridization study. Neuroscience 86, 813–826. 10.1016/S0306-4522(98)00126-2
    1. Bespalov M. M., Saarma M. (2007). GDNF family receptor complexes are emerging drug targets. Trends Pharmacol. Sci. 28, 68–74. 10.1016/j.tips.2006.12.005
    1. Bezard E., Dovero S., Imbert C., Boraud T., Gross C. E. (2000). Spontaneous long-term compensatory dopaminergic sprouting in MPTP-treated mice. Synapse 38, 363–368. 10.1002/1098-2396(20001201)38:3<363::AID-SYN16>;2-A
    1. Bishop G. A., Chang H. T., Kitai S. T. (1981). Morphological and physiological properties of neostriatal neurons: an intracellular horseradish peroxidase study in the rat. Neuroscience 7, 179–191. 10.1016/0306-4522(82)90159-2
    1. Björklund A., Lindvall O. (2017). Replacing dopamine neurons in parkinson's disease: how did it happen? J. Parkinsons Dis. 7, S23–S33. 10.3233/JPD-179002
    1. Bloem B. R., de Vries N. M., Ebersbach G. (2015). Nonpharmacological treatments for patients with Parkinson's disease. Mov. Disord. 30, 1504–1520. 10.1002/mds.26363
    1. Braak H., Ghebremedhin E., Rüb U., Bratzke H., Del Tredici K. (2004). Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 318, 121–134. 10.1007/s00441-004-0956-9
    1. Bramham C. R., Panja D. (2014). BDNF regulation of synaptic structure, function, and plasticity. Neuropharmacology 76(Pt C), 601–602. 10.1016/j.neuropharm.2013.08.012
    1. Burke R. E., O'Malley K. (2013). Axon degeneration in Parkinson's disease. Exp. Neurol. 246, 72–83. 10.1016/j.expneurol.2012.01.011
    1. Burley C. V., Bailey D. M., Marley C. J., Lucas S. J. E. (2016). Brain train to combat brain drain; focus on exercise strategies that optimise neuroprotection. Exp. Physiol. 101, 1178–1184. 10.1113/EP085672
    1. Chang H. T., Wilson C. J., Kitai S. T. (1981). Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study. Science 213, 915–918. 10.1126/science.7256286
    1. Chauhan N. B., Siegel G. J., Lee J. M. (2001). Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson's disease brain. J. Chem. Neuroanat. 21, 277–288. 10.1016/S0891-0618(01)00115-6
    1. Chen W., Shi K. X., Liu X. L. (2015a). Exercise intervention improves behavioral function in PD rats through modulation of striatal MSNs. Chin. J. Sports Med. 34, 228–234.
    1. Chen H., Zhang S. M., Schwarzschild M. A., Hernán M. A., Ascherio A. (2005). Physical activity and the risk of Parkinson disease. Neurology 64,664–669. 10.1212/01.WNL.0000151960.28687.93
    1. Chen M. T., Morales M., Woodward D. J., Hoffer B. J., Janak P. H. (2001). In vivo extracellular recording of striatal neurons in the awake rat following unilateral 6-hydroxydopamine lesions. Exp. Neurol. 171, 72–83. 10.1006/exnr.2001.7730
    1. Chen W., Wei X., Liu X. L., Yan K. L. (2015b). Effect of exercise on cortex-striatum glutamatergic neurotransmission in PD Model rats. J. Beijing Sport Univ. 38, 61–66.
    1. Cheng H. C., Ulane C. M., Burke R. E. (2010). Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 67, 715–725. 10.1002/ana.21995
    1. Chiken S., Sato A., Ohta C., Kurokawa M., Arai S., Maeshima J., et al. . (2015). Dopamine D1 receptor-mediated transmission maintains information flow through the cortico-striato-entopeduncular direct pathway to release movements. Cereb. Cortex 25, 4885–4897. 10.1093/cercor/bhv209
    1. Choi-Lundberg D. L., Lin Q., Chang Y. N., Chiang Y. L., Hay C. M., Mohajeri H., et al. . (1997). Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275, 838–841. 10.1126/science.275.5301.838
    1. Churchill M. J., Pflibsen L., Sconce M. D., Moore C., Kim K., Meshul C. K. (2017). Exercise in an animal model of Parkinson's disease: motor recovery but not restoration of the nigrostriatal pathway. Neuroscience 359, 224–247. 10.1016/j.neuroscience.2017.07.031
    1. Ciliax B. J., Drash G. W., Staley J. K., Haber S., Mobley C. J., Miller G. W., et al. . (1999). Immunocytochemical localization of the dopamine transporter in human brain. J. Comp. Neurol. 409, 38–56. 10.1002/(SICI)1096-9861(19990621)409:1<38::AID-CNE4>;2-1
    1. Coelho F. G., Vital T. M., Stein A. M., Arantes F. J., Rueda A. V., Camarini R., et al. . (2014). Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease. J. Alzheimers Dis. 39, 401–408. 10.3233/JAD-131073
    1. Coelho M., Ferreira J. J. (2012). Late-stage Parkinson disease. Nat. Rev. Neurol. 8, 435–442. 10.1038/nrneurol.2012.126
    1. Cohen A. D., Tillerson J. L., Smith A. D., Schallert T., Zigmond M. J. (2003). Neuroprotective effects of prior limb use in -hydroxydopamine-treated rats: possible role of GDNF. J. Neurochem. 85, 299–305. 10.1046/j.1471-4159.2003.01657.x
    1. Cohen A. D., Zigmond M. J., Smith A. D. (2011). Effects of intrastriatal GDNF on the response of dopamine neurons to 6-hydroxydopamine: time course of protection and neurorestoration. Brain Res. 1370, 80–88. 10.1016/j.brainres.2010.11.006
    1. Conner J. M., Lauterborn J. C., Yan Q., Gall C. M., Varon S. (1997). Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. 17, 2295–2313.
    1. Connor B., Kozlowski D. A., Unnerstall J. R., Elsworth J. D., Tillerson J. L., Schallert T., et al. . (2001). Glial cell line-derived neurotrophic factor (GDNF) gene delivery protects dopaminergic terminals from degeneration. Exp. Neurol. 169, 83–95. 10.1006/exnr.2001.7638
    1. Corcos D. M., Robichaud J. A., David F. J., Leurgans S. E., Vaillancourt D. E., Poon C., et al. . (2013). A two-year randomized controlled trial of progressive resistance exercise for Parkinson's disease. Mov. Disord. 28, 1230–1240. 10.1002/mds.25380
    1. Cotman C. W., Berchtold N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–301. 10.1016/S0166-2236(02)02143-4
    1. Cotman C. W., Berchtold N. C., Christie L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472. 10.1016/j.tins.2007.06.011
    1. Cui G., Jun S. B., Jin X., Pham M. D., Vogel S. S., Lovinger D. M., et al. . (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242. 10.1038/nature11846
    1. Cull-Candy S., Kelly L., Farrant M. (2006). Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol. 16, 288–297. 10.1016/j.conb.2006.05.012
    1. da Silva P. G., Domingues D. D., de Carvalho L. A., Allodi S., Correa C. L. (2016). Neurotrophic factors in Parkinson's disease are regulated by exercise: evidence-based practice. J. Neurol. Sci. 363, 5–15. 10.1016/j.jns.2016.02.017
    1. Day M., Wang Z., Ding J., An X., Ingham C. A., Shering A. F., et al. . (2006). Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat. Neurosci. 9, 251–259. 10.1038/nn1632
    1. de Lau L. M., Breteler M. M. (2006). Epidemiology of Parkinson's disease. Lancet Neurol. 5, 525–535. 10.1016/S1474-4422(06)70471-9
    1. Del Tredici K., Braak H. (2016). Review: sporadic Parkinson's disease: development and distribution of α-synuclein pathology. Neuropathol. Appl. Neurobiol. 42, 33–50. 10.1111/nan.12298
    1. Deng Y., Lanciego J., Goff L. K., Coulon P., Salin P., Kachidian P., et al. . (2015). Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats. Front. Syst. Neurosci. 9:51. 10.3389/fnsys.2015.00051
    1. Ding S., Li L., Zhou F. M. (2015). Nigral dopamine loss induces a global upregulation of presynaptic dopamine D1 receptor facilitation of the striatonigral GABAergic output. J. Neurophysiol. 113, 1697–1711. 10.1152/jn.00752.2014
    1. Dipasquale S., Meroni R., Sasanelli F., Messineo I., Piscitelli D., Perin C., et al. . (2017). Physical therapy versus a general exercise programme in patients with hoehn yahr stage II parkinson's disease: a randomized controlled trial. J. Parkinsons Dis. 7, 203–210. 10.3233/JPD-161015
    1. Doig N. M., Moss J., Bolam J. P. (2010). Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J. Neurosci. 30, 14610–14618. 10.1523/JNEUROSCI.1623-10.2010
    1. Duchesne C., Lungu O., Nadeau A., Robillard M. E., Boré A., Bobeuf F., et al. . (2015). Enhancing both motor and cognitive functioning in Parkinson's disease: aerobic exercise as a rehabilitative intervention. Brain Cogn. 99, 68–77. 10.1016/j.bandc.2015.07.005
    1. Durieux P. F., Bearzatto B., Guiducci S., Buch T., Waisman A., Zoli M., et al. . (2009). D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat. Neurosci. 12, 393–395. 10.1038/nn.2286
    1. Durieux P. F., Schiffmann S. N., de Kerchove d'Exaerde A. (2012). Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO J. 31, 640–653. 10.1038/emboj.2011.400
    1. Elsworth J. D., Taylor J. R., Sladek J. R., Jr., Collier T. J., Redmond D. E., Jr., Roth R. H. (2000). Striatal dopaminergic correlates of stable parkinsonism and degree of recovery in old-world primates one year after MPTP treatment. Neuroscience 95, 399–408. 10.1016/S0306-4522(99)00437-6
    1. Finkelstein D. I., Stanic D., Parish C. L., Tomas D., Dickson K., Horne M. K. (2000). Axonal sprouting following lesions of the rat substantia nigra. Neuroscience 97, 99–112. 10.1016/S0306-4522(00)00009-9
    1. Finnegan K. T., Irwin I., Delanney L. E., Langston J. W. (1995). Age-dependent effects of the 2′-methyl analog of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine: prevention by inhibitors of monoamine oxidase B. J. Pharmacol. Exp. Ther. 273, 716–720.
    1. Fontanesi C., Kvint S., Frazzitta G., Bera R., Ferrazzoli D., Di Rocco A., et al. . (2016). Intensive rehabilitation enhances lymphocyte BDNF-TrkB signaling in patients with parkinson's disease. Neurorehabil. Neural Repair 30, 411–418. 10.1177/1545968315600272
    1. Fox C. M., Gash D. M., Smoot M. K., Cass W. A. (2001). Neuroprotective effects of GDNF against 6-OHDA in young and aged rats. Brain Res. 896, 56–63. 10.1016/S0006-8993(00)03270-4
    1. Fox S. H., Katzenschlager R., Lim S. Y., Ravina B., Seppi K., Coelho M., et al. (2011). The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of parkinson's disease. Mov. Disord. 26(Suppl. 3), S2–S41. 10.1002/mds.23829
    1. Franco V., Turner R. S. (2012). Testing the contributions of striatal dopamine loss to the genesis of parkinsonian signs. Neurobiol. Dis. 47, 114–125. 10.1016/j.nbd.2012.03.028
    1. Frazzitta G., Maestri R., Ghilardi M. F., Riboldazzi G., Perini M., Bertotti G., et al. . (2014). Intensive rehabilitation increases BDNF serum levels in parkinsonian patients: a randomized study. Neurorehabil. Neural Repair 28, 163–168. 10.1177/1545968313508474
    1. Friend D. M., Kravitz A. V. (2014). Working together: basal ganglia pathways in action selection. Trends Neurosci. 37, 301–303. 10.1016/j.tins.2014.04.004
    1. Fujiyama F., Sohn J., Nakano T., Furuta T., Nakamura K. C., Matsuda W., et al. (2011). Exclusive and common targets of neostriatofugal projections of rat striosomes neurons: a single neuron-tracing study using a viral vector. Eur. J. Neurosci. 33, 668–677. 10.1111/j.1460-9568.2010.07564.x
    1. Gaig C., Tolosa E. (2009). When does Parkinson's disease begin? Mov. Disord. 24(Suppl. 2), S656–S664. 10.1002/mds.22672
    1. Galati S., Stanzione P., D'Angelo V., Fedele E., Marzetti F., Sancesario G., et al. . (2009). The pharmacological blockade of medial forebrain bundle induces an acute pathological synchronization of the cortico-subthalamic nucleus-globus pallidus pathway. J. Physiol. 587, 4405–4423. 10.1113/jphysiol.2009.172759
    1. Garcia P. C., Real C. C., Britto L. R. (2017). The impact of short and long-term exercise on the expression of Arc and AMPARs during evolution of the 6-hydroxy-dopamine animal model of parkinson's disease. J. Mol. Neurosci. 61, 542–552. 10.1007/s12031-017-0896-y
    1. Garea-Rodríguez E., Eesmaa A., Lindholm P., Schlumbohm C., König J., Meller B., et al. . (2016). Comparative analysis of the effects of neurotrophic factors CDNF and GDNF in a nonhuman primate model of parkinson's disease. PLoS ONE 11:e0149776. 10.1371/journal.pone.0149776
    1. Gash D. M., Zhang Z., Ai Y., Grondin R., Coffey R., Gerhardt G. A. (2005). Trophic factor distribution predicts functional recovery in parkinsonian monkeys. Ann. Neurol. 58, 224–233. 10.1002/ana.20549
    1. Gash D. M., Zhang Z., Cass W. A., Ovadia A., Simmerman L., Martin D., et al. . (1995). Morphological and functional effects of intranigrally administered GDNF in normal rhesus monkeys. J. Comp. Neurol. 363, 345–358. 10.1002/cne.903630302
    1. Gash D. M., Zhang Z., Ovadia A., Cass W. A., Yi A., Simmerman L., et al. . (1996). Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380, 252–255. 10.1038/380252a0
    1. Gerecke K. M., Jiao Y., Pani A., Pagala V., Smeyne R. J. (2010). Exercise protects against MPTP-induced neurotoxicity in mice. Brain Res. 1341, 72–83. 10.1016/j.brainres.2010.01.053
    1. Gerecke K. M., Jiao Y., Pagala V., Smeyne R. J. (2012). Exercise does not protect against MPTP-induced neurotoxicity in BDNF haploinsufficient mice. PLoS ONE 7:e43250 10.1371/journal.pone.0043250
    1. Gerfen C. R., Bolam J. P. (2017). The neuroanatomical organization of the basal ganglia, in Handbook of Basal Ganglia Structure and Function, eds Steiner H., Tseng K. Y. (New York, NY: Academic Press; ), 3–32.
    1. Gill S. S., Patel N. K., Hotton G. R., O'Sullivan K., McCarter R., Bunnage M., et al. . (2003). Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9, 589–595. 10.1038/nm850
    1. Glass M., Dragunow M., Faull R. L. (2000). The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease. Neuroscience 97, 505–519. 10.1016/S0306-4522(00)00008-7
    1. Goedert M., Spillantini M. G., Del Tredici K., Braak H. (2013). 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24. 10.1038/nrneurol.2012.242
    1. Goes A. T., Souza L. C., Filho C. B., Del Fabbro L., De Gomes M. G., Boeira S. P., et al. . (2014). Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine. Neuroscience 256, 61–71. 10.1016/j.neuroscience.2013.09.042
    1. Gorski J. A., Zeiler S. R., Tamowski S., Jones K. R. (2003). Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J. Neurosci. 23, 6856–6865.
    1. Gorton L. M., Vuckovic M. G., Vertelkina N., Petzinger G. M., Jakowec M. W., Wood R. I. (2010). Exercise effects on motor and affective behavior and catecholamine neurochemistry in the MPTP-lesioned mouse. Behav. Brain Res. 213, 253–262. 10.1016/j.bbr.2010.05.009
    1. Grondin R., Zhang Z., Yi A., Cass W. A., Maswood N., Andersen A. H., et al. . (2002). Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125, 2191–2201. 10.1093/brain/awf234
    1. Haber S. N. (2016). Corticostriatal circuitry. Dialogues Clin. Neurosci. 18, 7–21.
    1. Hagg T. (1998). Neurotrophins prevent death and differentially affect tyrosine hydroxylase of adult rat nigrostriatal neurons in vivo. Exp. Neurol. 149, 183–192. 10.1006/exnr.1997.6684
    1. Hardman C. D., Henderson J. M., Finkelstein D. I., Horne M. K., Paxinos G., Halliday G. M. (2002). Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J. Comp. Neurol. 445, 238–255. 10.1002/cne.10165
    1. Hawkes C. H., Del Tredici K., Braak H. (2010). A timeline for Parkinson's disease. Parkinsonism Relat. Disord. 16, 79–84. 10.1016/j.parkreldis.2009.08.007
    1. Hegarty S. V., Lee D. J., O'Keeffe G. W., Sullivan A. M. (2017). Effects of intracerebral neurotrophic factor application on motor symptoms in Parkinson's disease: a systematic review and meta-analysis. Parkinsonism Relat. Disord. 38, 19–25. 10.1016/j.parkreldis.2017.02.011
    1. Hofer M., Pagliusi S. R., Hohn A., Leibrock J., Barde Y. A. (1990). Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 9, 2459–2464.
    1. Hood R. L., Liguore W. A., Moore C., Pflibsen L., Meshul C. K. (2016). Exercise intervention increases spontaneous locomotion but fails to attenuate dopaminergic system loss in a progressive MPTP model in aged mice. Brain Res. 1646, 535–542. 10.1016/j.brainres.2016.06.032
    1. Horch H. W., Katz L. C. (2002). BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat. Neurosci. 5, 1177–1184. 10.1038/nn927
    1. Hornykiewicz O. (2001). Chemical neuroanatomy of the basal ganglia—normal and in Parkinson's disease. J. Chem. Neuroanat. 22, 3–12. 10.1016/S0891-0618(01)00100-4
    1. Hornykiewicz O. (2017). L-DOPA. J. Parkinsons Dis. 7, S3–S10. 10.3233/JPD-179004
    1. Hou J. G., Lin L. F., Mytilineou C. (1996). Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium. J. Neurochem. 66, 74–82. 10.1046/j.1471-4159.1996.66010074.x
    1. Howells D. W., Porritt M. J., Wong J. Y., Batchelor P. E., Kalnins R., Hughes A. J., et al. . (2000). Reduced BDNF mRNA expression in the Parkinson's disease substantia nigra. Exp. Neurol. 166, 127–135. 10.1006/exnr.2000.7483
    1. Huerta-Ocampo I., Mena-Segovia J., Bolam J. P. (2014). Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct. Funct. 219, 1787–1800. 10.1007/s00429-013-0601-z
    1. Hurd Y. L., Suzuki M., Sedvall G. C. (2001). D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J. Chem. Neuroanat. 22, 127–137. 10.1016/S0891-0618(01)00122-3
    1. Hyman C., Hofer M., Barde Y. A., Juhasz M., Yancopoulos G. D., Squinto S. P., et al. . (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–232. 10.1038/350230a0
    1. Hyman C., Juhasz M., Jackson C., Wright P., Ip N. Y., Lindsay R. M. (1994). Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347.
    1. Ibáñez C. F., Andressoo J. O. (2017). Biology of GDNF and its receptors - Relevance for disorders of the central nervous system. Neurobiol. Dis. 97, 80–89. 10.1016/j.nbd.2016.01.021
    1. Ibáñez-Sandoval O., Tecuapetla F., Unal B., Shah F., Koós T., Tepper J. M. (2010). Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum. J. Neurosci. 30, 6999–7016. 10.1523/JNEUROSCI.5996-09.2010
    1. Ingham C. A., Hood S. H., Taggart P., Arbuthnott G. W. (1998). Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J. Neurosci. 18, 4732–4743.
    1. Jackson P. A., Pialoux V., Corbett D., Drogos L., Erickson K. I., Eskes G. A., et al. . (2016). Promoting brain health through exercise and diet in older adults: a physiological perspective. J. Physiol. 594, 4485–4498. 10.1113/JP271270
    1. Jang Y., Koo J. H., Kwon I., Kang E. B., Um H. S., Soya H., et al. . (2017). Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson's disease mice. Brain Res. 1655, 186–193. 10.1016/j.brainres.2016.10.029
    1. Jin X., Tecuapetla F., Costa R. M. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430. 10.1038/nn.3632
    1. Jones T. A., Schallert T. (1994). Use-dependent growth of pyramidal neurons after neocortical damage. J. Neurosci. 14, 2140–2152.
    1. Kalia L. V., Kalia S. K., Lang A. E. (2015). Disease-modifying strategies for Parkinson's disease. Mov. Disord. 30, 1442–1450. 10.1002/mds.26354
    1. Kang U. J., Auinger P., Parkinson Study Group ELLDOPA Investigators (2012). Activity enhances dopaminergic long-duration response in Parkinson disease. Neurology 78, 1146–1149. 10.1212/WNL.0b013e31824f8056
    1. Kasanetz F., Riquelme L. A., O'Donnell P., Murer M. G. (2006). Turning off cortical ensembles stops striatal Up states and elicits phase perturbations in cortical and striatal slow oscillations in rat in vivo. J. Physiol. 577, 97–113. 10.1113/jphysiol.2006.113050
    1. Katzenschlager R., Head J., Schrag A., Ben-Shlomo Y., Evans A., Lees A. J. (2008). Parkinson's Disease Research Group of the United Kingdom. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology 71, 474–480. 10.1212/01.wnl.0000310812.43352.66
    1. Kawaguchi Y., Wilson C. J., Emson P. C. (1989). Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J. Neurophysiol. 62, 1052–1068.
    1. Kawaguchi Y., Wilson C. J., Emson P. C. (1990). Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J. Neurosci. 10, 3421–3438.
    1. Kelly N. A., Ford M. P., Standaert D. G., Watts R. L., Bickel C. S., Moellering D. R., et al. . (2014). Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson's disease. J. Appl. Physiol. (1985). 116, 582–592. 10.1152/japplphysiol.01277.2013
    1. Kemp J. M., Powell T. P. S. (1971). The structure of the caudate nucleus of the cat: light and electron microscopy. Philos. Trans. R. Soc. Lond. B 262, 383–401. 10.1098/rstb.1971.0102
    1. Kincaid A. E., Zheng T., Wilson C. J. (1998). Connectivity and convergence of single corticostriatal axons. J. Neurosci. 18, 4722–4731.
    1. Kintz N., Petzinger G. M., Akopian G., Ptasnik S., Williams C., Jakowec M. W., et al. . (2013). Exercise modifies α-amino- 3-hydroxy−5-methyl-4- isoxazolepropionic acid receptor expression in striatopallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse. J. Neurosci. Res. 91, 1492–1507. 10.1002/jnr.23260
    1. Kirik D., Cederfjäll E., Halliday G., Petersén Å. (2017). Gene therapy for Parkinson's disease: disease modification by GDNF family of ligands. Neurobiol. Dis. 97, 179–188. 10.1016/j.nbd.2016.09.008
    1. Kirik D., Georgievska B., Björklund A. (2004). Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat. Neurosci. 7, 105–110. 10.1038/nn1175
    1. Kirik D., Rosenblad C., Björklund A. (1998). Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp. Neurol. 152, 259–277. 10.1006/exnr.1998.6848
    1. Kish L. J., Palmer M. R., Gerhardt G. A. (1999). Multiple single-unit recordings in the striatum of freely moving animals: effects of apomorphine and D-amphetamine in normal and unilateral 6-hydroxydopamine-lesioned rats. Brain Res. 833, 58–70. 10.1016/S0006-8993(99)01496-1
    1. Kish S. J., Shannak K., Hornykiewicz O. (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N. Engl. J. Med. 318, 876–880. 10.1056/NEJM198804073181402
    1. Kita H., Kita T. (2011). Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. J. Neurosci. 31, 10311–10322. 10.1523/JNEUROSCI.0915-11.2011
    1. Koo J. H., Cho J. Y., Lee U. B. (2017a). Treadmill exercise alleviates motor deficits and improves mitochondrial import machinery in an MPTP-induced mouse model of Parkinson's disease. Exp. Gerontol. 89, 20–29. 10.1016/j.exger.2017.01.001
    1. Koo J. H., Jang Y. C., Hwang D. J., Um H. S., Lee N. H., Jung J. H., et al. . (2017b). Treadmill exercise produces neuroprotective effects in a murine model of Parkinson's disease by regulating the TLR2/MyD88/NF-κB signaling pathway. Neuroscience 356, 102–113. 10.1016/j.neuroscience.2017.05.016
    1. Kopra J., Vilenius C., Grealish S., Härma M. A., Varendi K., Lindholm J., et al. (2015). GDNF is not required for catecholaminergic neuron survival in vivo. Nat. Neurosci. 18, 319–322. 10.1038/nn.3941
    1. Kordower J. H., Bjorklund A. (2013). Trophic factor gene therapy for Parkinson's disease. Mov. Disord. 28, 96–109. 10.1002/mds.25344
    1. Kordower J. H., Emborg M. E., Bloch J., Ma S. Y., Chu Y., Leventhal L., et al. . (2000). Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290, 767–773. 10.1126/science.290.5492.767
    1. Kordower J. H., Olanow C. W., Dodiya H. B., Chu Y., Beach T. G., Adler C. H., et al. . (2013). Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. Brain 136, 2419–2431. 10.1093/brain/awt192
    1. Korol D. L., Gold P. E., Scavuzzo C. J. (2013). Use it and boost it with physical and mental activity. Hippocampus 23, 1125–1135. 10.1002/hipo.22197
    1. Kozlowski D. A., Connor B., Tillerson J. L., Schallert T., Bohn M. C. (2000). Delivery of a GDNF gene into the substantia nigra after a progressive 6-OHDA lesion maintains functional nigrostriatal connections. Exp. Neurol. 166, 1–15. 10.1006/exnr.2000.7463
    1. Kramer E. R., Liss B. (2015). GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett. 589, 3760–3772. 10.1016/j.febslet.2015.11.006
    1. Kravitz A. V., Freeze B. S., Parker P. R., Kay K., Thwin M. T., Deisseroth K., et al. . (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626. 10.1038/nature09159
    1. LaHue S. C., Comella C. L., Tanner C. M. (2016). The best medicine? The influence of physical activity and inactivity on Parkinson's disease. Mov. Disord. 31, 1444–1454. 10.1002/mds.26728
    1. Lalanne T., Oyrer J., Mancino A., Gregor E., Chung A., Huynh L., et al. . (2016). Synapse-specific expression of calcium-permeable AMPA receptors in neocortical layer 5. J. Physiol. 594, 837–861. 10.1113/JP271394
    1. Lau Y. S., Patki G., Das-Panja K., Le W. D., Ahmad S. O. (2011). Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson's disease with moderate neurodegeneration. Eur. J. Neurosci. 33, 1264–1274. 10.1111/j.1460-9568.2011.07626.x
    1. Lauzé M., Daneault J. F., Duval C. (2016). The effects of physical activity in parkinson's disease: a review. J. Parkinsons Dis. 6, 685–698. 10.3233/JPD-160790
    1. Leal G., Comprido D., Duarte C. B. (2014). BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 76(Pt C), 639–656. 10.1016/j.neuropharm.2013.04.005
    1. Lee C. S., Sauer H., Bjorklund A. (1996). Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by instrastriatal 6-hydroxydopamine in the rat. Neuroscience 72, 641–653. 10.1016/0306-4522(95)00571-4
    1. Lee J., Zhu W. M., Stanic D., Finkelstein D. I., Horne M. H., Henderson J., et al. . (2008). Sprouting of dopamine terminals and altered dopamine release and uptake in Parkinsonian dyskinaesia. Brain 131, 1574–1587. 10.1093/brain/awn085
    1. Leibrock J., Lottspeich F., Hohn A., Hofer M., Hengerer B., Masiakowski P., et al. . (1989). Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341, 149–152. 10.1038/341149a0
    1. Levey A. I., Hersch S. M., Rye D. B., Sunahara R. K., Niznik H. B., Kitt C. A., et al. . (1993). Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc. Natl. Acad. Sci. U.S.A. 90, 8861–8865. 10.1073/pnas.90.19.8861
    1. Levi-Montalcini R., Cohen S. (1956). In vitro and in vivo effects of a nerve-stimulating agent isolated from snake venom. Proc. Natl. Acad. Sci. U.S.A. 42, 695–699. 10.1073/pnas.42.9.695
    1. Levi-Montalcini R., Hamburger V. (1951). Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 116, 321–361. 10.1002/jez.1401160206
    1. Levi-Montalcini R., Skaper S. D., Dal Toso R., Petrelli L., Leon A. (1996). Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci. 19, 514–520. 10.1016/S0166-2236(96)10058-8
    1. Levivier M., Przedborski S., Bencsics C., Kang U. J. (1995). Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson's disease. J. Neurosci. 15, 7810–7820.
    1. Lewis D. A., Melchitzky D. S., Sesack S. R., Whitehead R. E., Auh S., Sampson A. (2001). Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J. Comp. Neurol. 432, 119–136. 10.1002/cne.1092
    1. Li F., Harmer P., Fitzgerald K., Eckstrom E., Stock R., Galver J., et al. . (2012). Tai chi and postural stability in patients with Parkinson's disease. N. Engl. J. Med. 366, 511–519. 10.1056/NEJMoa1107911
    1. Li F., Harmer P., Liu Y., Eckstrom E., Fitzgerald K., Stock R., et al. . (2014). A randomized controlled trial of patient-reported outcomes with tai chi exercise in Parkinson's disease. Mov. Disord. 29, 539–545. 10.1002/mds.25787
    1. Li L., Sagot B., Zhou F.-M. (2015). Similar L-dopa-stimulated motor activity in mice with adult-onset 6-hydroxydopamine-induced symmetric dopamine denervation and in transcription factor Pitx3 null mice with perinatal-onset symmetric dopamine denervation. Brain Res. 1615, 12–21. 10.1016/j.brainres.2015.04.011
    1. Li W., Englund E., Widner H., Mattsson B., van Westen D., Lätt J., et al. . (2016). Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc. Natl. Acad. Sci. U.S.A. 113, 6544–6549. 10.1073/pnas.1605245113
    1. Li Y., Yui D., Luikart B. W., McKay R. M., Li Y., Rubenstein J. L., et al. . (2012). Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development. Proc. Natl. Acad. Sci. U. S.A. 109, 15491–15496. 10.1073/pnas.1212899109
    1. Liberatore G. T., Finkelstein D. I., Wong J. Y., Horne M. K., Porritt M. J., Donnan G. A., et al. (1999). Sprouting of dopaminergic axons after striatal injury: confirmation by markers not dependent on dopamine metabolism. Exp. Neurol. 159, 565–573. 10.1006/exnr.1999.7152
    1. Lin L. F., Doherty D. H., Lile J. D., Bektesh S., Collins F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132. 10.1126/science.8493557
    1. Lindahl M., Saarma M., Lindholm P. (2017). Unconventional neurotrophic factors CDNF and MANF: structure, physiological functions and therapeutic potential. Neurobiol. Dis. 97, 90–102. 10.1016/j.nbd.2016.07.009
    1. Lindholm P., Voutilainen M. H., Laurén J., Peränen J., Leppänen V. M., Andressoo J. O., et al. . (2007). Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448, 73–77. 10.1038/nature05957
    1. Liu S. J., Savtchouk I. (2012). Ca2+ permeable AMPA receptors switch allegiances: mechanisms and consequences. J. Physiol. 590, 13–20. 10.1113/jphysiol.2011.213926
    1. Logroscino G., Sesso H. D., Paffenbarger R. S., Jr., Lee I. M. (2006). Physical activity and risk of Parkinson's disease: a prospective cohort study. J. Neurol. Neurosurg. Psychiatry 77, 1318–1322. 10.1136/jnnp.2006.097170
    1. Lu B., Nagappan G., Guan X., Nathan P. J., Wren P. (2013). BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat. Rev. Neurosci. 14, 401–416. 10.1038/nrn3505
    1. Lu X., Hagg T. (1997). Glial cell line-derived neurotrophic factor prevents death, but not reductions in tyrosine hydroxylase, of injured nigrostriatal neurons in adult rats. J. Comp. Neurol. 388, 484–494. 10.1002/(SICI)1096-9861(19971124)388:3<484::AID-CNE10>;2-M
    1. Mahon S., Vautrelle N., Pezard L., Slaght S. J., Deniau J. M., Chouvet G., et al. . (2006). Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle. J. Neurosci. 26, 12587–12595. 10.1523/JNEUROSCI.3987-06.2006
    1. Mang C. S., Campbell K. L., Ross C. J., Boyd L. A. (2013). Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys. Ther. 93, 1707–1716. 10.2522/ptj.20130053
    1. Marston K. J., Newton M. J., Brown B. M., Rainey-Smith S. R., Bird S., Martins R. N., et al. . (2017). Intense resistance exercise increases peripheral brain-derived neurotrophic factor. J. Sci. Med. Sport 20, 899–903. 10.1016/j.jsams.2017.03.015
    1. Marusiak J., Zeligowska E., Mencel J., Kisiel-Sajewicz K., Majerczak J., Zoladz J. A., et al. . (2015). Interval training-induced alleviation of rigidity and hypertonia in patients with Parkinson's disease is accompanied by increased basal serum brain-derived neurotrophic factor. J. Rehabil. Med. 47, 372–375. 10.2340/16501977-1931
    1. Maswood N., Grondin R., Zhang Z., Stanford J. A., Surgener S. P., Gash D. M., et al. . (2002). Effects of chronic intraputamenal infusion of glial cell line-derived neurotrophic factor (GDNF) in aged Rhesus monkeys. Neurobiol. Aging 23, 881–889. 10.1016/S0197-4580(02)00022-2
    1. Matsuda W., Furuta T., Nakamura K. C., Hioki H., Fujiyama F., Arai R., et al. . (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453. 10.1523/JNEUROSCI.4029-08.2009
    1. McNeill T. H., Brown S. A., Rafols J. A., Shoulson I. (1988). Atrophy of medium spiny I striatal dendrites in advanced Parkinson's disease. Brain Res. 455, 148–152. 10.1016/0006-8993(88)90124-2
    1. Mitchell I. J., Cooper A. J., Griffiths M. R. (1999). The selective vulnerability of striatopallidal neurons. Prog. Neurobiol. 59, 691–719. 10.1016/S0301-0082(99)00019-2
    1. Mogi M., Togari A., Kondo T., Mizuno Y., Komure O., Kuno S., et al. . (1999). Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neurosci. Lett. 270, 45–48. 10.1016/S0304-3940(99)00463-2
    1. Morigaki R., Goto S. (2016). Putaminal Mosaic Visualized by Tyrosine Hydroxylase Immunohistochemistry in the Human Neostriatum. Front. Neuroanat. 10:34. 10.3389/fnana.2016.00034
    1. Moss J., Bolam J. P. (2008). A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J. Neurosci. 28, 11221–11230. 10.1523/JNEUROSCI.2780-08.2008
    1. Mounayar S., Boulet S., Tandé D., Jan C., Pessiglione M., Hirsch E. C., et al. . (2007). A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain 130, 2898–2914. 10.1093/brain/awm208
    1. Muriel M. P., Agid Y., Hirsch E. (2001). Plasticity of afferent fibers to striatal neurons bearing D1 dopamine receptors in Parkinson's disease. Mov. Disord. 16, 435–441. 10.1002/mds.1103
    1. Nagahara A. H., Tuszynski M. H. (2011). Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug Discov. 10, 209–219. 10.1038/nrd3366
    1. Nakajima K., Hida H., Shimano Y., Fujimoto I., Hashitani T., Kumazaki M., et al. . (2001). GDNF is a major component of trophic activity in DA-depleted striatum for survival and neurite extension of DAergic neurons. Brain Res. 916, 76–84. 10.1016/S0006-8993(01)02866-9
    1. Nambu A. (2008). Seven problems on the basal ganglia. Curr. Opin. Neurobiol. 18, 595–604. 10.1016/j.conb.2008.11.001
    1. Nambu A. (2011). Somatotopic organization of the primate Basal Ganglia. Front. Neuroanat. 5:26. 10.3389/fnana.2011.00026
    1. Neeper S. A., Gómez-Pinilla F., Choi J., Cotman C. (1995). Exercise and brain neurotrophins. Nature 373:109. 10.1038/373109a0
    1. Neeper S. A., Gómez-Pinilla F., Choi J., Cotman C. W. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726, 49–56. 10.1016/0006-8993(96)00273-9
    1. Nishijima T., Torres-Aleman I., Soya H. (2016). Exercise and cerebrovascular plasticity. Prog. Brain Res. 225, 243–268. 10.1016/bs.pbr.2016.03.010
    1. Noyce A. J., Lees A. J., Schrag A. E. (2016). The prediagnostic phase of Parkinson's disease. J. Neurol. Neurosurg. Psychiatry. 87, 871–878. 10.1136/jnnp-2015-311890
    1. Numan S., Seroogy K. B. (1999). Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: a double-label in situ hybridization study. J. Comp. Neurol. 403, 295–308.
    1. Obeso J. A., Rodriguez-Oroz M. C., Stamelou M., Bhatia K. P., Burn D. J. (2014). The expanding universe of disorders of the basal ganglia. Lancet 384, 523–531. 10.1016/S0140-6736(13)62418-6
    1. O'Dell S. J., Gross N. B., Fricks A. N., Casiano B. D., Nguyen T. B., Marshall J. F. (2007). Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection. Neuroscience 144, 1141–1151. 10.1016/j.neuroscience.2006.10.042
    1. Oguh O., Eisenstein A., Kwasny M., Simuni T. (2014). Back to the basics: regular exercise matters in parkinson's disease: results from the National Parkinson Foundation QII registry study. Parkinsonism Relat. Disord. 20, 1221–1225. 10.1016/j.parkreldis.2014.09.008
    1. Olanow C. W., Bartus R. T., Volpicelli-Daley L. A., Kordower J. H. (2015). Trophic factors for Parkinson's disease: to live or let die. Mov. Disord. 30, 1715–1724. 10.1002/mds.26426
    1. Olanow C. W., Stern M. B., Sethi K. (2009). The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology 72(21Suppl. 4), S1–S136. 10.1212/WNL.0b013e3181a1d44c
    1. Olson L., Backlund E. O., Ebendal T., Freedman R., Hamberger B., Hansson P., et al. . (1991). Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson's disease: one-year follow-up of first clinical trial. Arch. Neurol. 48, 373–381. 10.1001/archneur.1991.00530160037011
    1. Oorschot D. E. (1996). Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J. Comp. Neurol. 366, 580–599.
    1. Oppenheim R. W., Houenou L. J., Johnson J. E., Lin L. F., Li L., Lo A. C., et al. . (1995). Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 373, 344–346. 10.1038/373344a0
    1. Orefice L. L., Shih C. C., Xu H., Waterhouse E. G., Xu B. (2016). Control of spine maturation and pruning through proBDNF synthesized and released in dendrites. Mol. Cell. Neurosci. 71, 66–79. 10.1016/j.mcn.2015.12.010
    1. Orefice L. L., Waterhouse E. G., Partridge J. G., Lalchandani R. R., Vicini S., Xu B. (2013). Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J. Neurosci. 33, 11618–11632. 10.1523/JNEUROSCI.0012-13.2013
    1. Ostergaard K., Jones S. A., Hyman C., Zimmer J. (1996). Effects of donor age and brain-derived neurotrophic factor on the survival of dopaminergic neurons and axonal growth in postnatal rat nigrostriatal cocultures. Exp. Neurol. 142, 340–350. 10.1006/exnr.1996.0203
    1. Parain K., Murer M. G., Yan Q., Faucheux B., Agid Y., Hirsch E., et al. . (1999). Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra. Neuroreport 10, 557–561. 10.1097/00001756-199902250-00021
    1. Parent A., Hazrati L. N. (1995). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res. Brain Res. Rev. 20, 128–154. 10.1016/0165-0173(94)00008-D
    1. Park H., Poo M. M. (2013). Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7–23. 10.1038/nrn3379
    1. Parkinson J. (1817). An Essay on the Shaking Palsy. London: Sherwood Nesly & Jones.
    1. Pascual A., López-Barneo J. (2015). Reply to “GDNF is not required for catecholaminergic neuron survival in vivo”. Nat. Neurosci. 18, 322–323. 10.1038/nn.3942
    1. Pascual A., Hidalgo-Figueroa M., Piruat J. I., Pintado C. O., Gómez-Díaz R., López-Barneo J. (2008). Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat. Neurosci. 11, 755–761. 10.1038/nn.2136
    1. Pedersen B. K., Saltin B. (2015). Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 25(Suppl. 3), 1–72. 10.1111/sms.12581
    1. Pereira A. C., Huddleston D. E., Brickman A. M., Sosunov A. A., Hen R., McKhann G. M., et al. . (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. U.S.A. 104, 5638–5643. 10.1073/pnas.0611721104
    1. Petzinger G. M., Fisher B. E., McEwen S., Beeler J. A., Walsh J. P., Jakowec M. W. (2013). Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease. Lancet Neurol. 12, 716–726. 10.1016/S1474-4422(13)70123-6
    1. Petzinger G. M., Fisher B., Hogg E., Abernathy A., Arevalo P., Nixon K., et al. . (2006). Behavioral motor recovery in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned squirrel monkey (Saimiri sciureus): changes in striatal dopamine and expression of tyrosine hydroxylase and dopamine transporter proteins. J. Neurosci. Res. 83, 332–347. 10.1002/jnr.20730
    1. Petzinger G. M., Walsh J. P., Akopian G., Hogg E., Abernathy A., Arevalo P., et al. . (2007). Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-lesioned mouse model of basal ganglia injury. J. Neurosci. 27, 5291–5300. 10.1523/JNEUROSCI.1069-07.2007
    1. Porritt M. J., Batchelor P. E., Howells D. W. (2005). Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp. Neurol. 192, 226–234. 10.1016/j.expneurol.2004.11.030
    1. Prensa L., Cossette M., Parent A. (2000). Dopaminergic innervation of human basal ganglia. J. Chem. Neuroanat. 20, 207–213. 10.1016/S0891-0618(00)00099-5
    1. Preston R. J., Bishop G. A., Kitai S. T. (1980). Medium spiny neuron projection from the rat striatum: an intracellular horseradish peroxidase study. Brain Res. 183, 253–263. 10.1016/0006-8993(80)90462-X
    1. Pringsheim T., Jette N., Frolkis A., Steeves T. D. (2014). The prevalence of Parkinson's disease: a systematic review and meta-analysis. Mov. Disord. 29, 1583–1590. 10.1002/mds.25945
    1. Rafferty M. R., Schmidt P. N., Luo S. T., Li K., Marras C., Davis T. L. Investigators, et al. . (2017). Regular exercise, quality of life, and mobility in parkinson's disease: a longitudinal analysis of national parkinson foundation quality improvement initiative data. J. Parkinsons Dis. 7, 193–202. 10.3233/JPD-160912
    1. Rangasamy S. B., Soderstrom K., Bakay R. A., Kordower J. H. (2010). Neurotrophic factor therapy for Parkinson's disease. Prog. Brain Res. 184, 237–264. 10.1016/S0079-6123(10)84013-0
    1. Rauskolb S., Zagrebelsky M., Dreznjak A., Deogracias R., Matsumoto T., Wiese S., et al. . (2010). Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J. Neurosci. 30, 1739–1749. 10.1523/JNEUROSCI.5100-09.2010
    1. Real C. C., Ferreira A. F., Chaves-Kirsten G. P., Torrão A. S., Pires R. S., Britto L. R. (2013). BDNF receptor blockade hinders the beneficial effects of exercise in a rat model of Parkinson's disease. Neuroscience 237, 118–129. 10.1016/j.neuroscience.2013.01.060
    1. Real C. C., Garcia P. C., Britto L. R. G. (2017). Treadmill exercise prevents increase of neuroinflammation markers involved in the dopaminergic damage of the 6-OHDA parkinson's disease model. J. Mol. Neurosci. 63, 36–49. 10.1007/s12031-017-0955-4
    1. Reynolds G. O., Otto M. W., Ellis T. D., Cronin-Golomb A. (2016). The therapeutic potential of exercise to improve mood, cognition, and sleep in parkinson's disease. Mov. Disord. 31, 23–38. 10.1002/mds.26484
    1. Sääksjärvi K., Knekt P., Männistö S., Lyytinen J., Jääskeläinen T., Kanerva N., et al. . (2014). Reduced risk of Parkinson's disease associated with lower body mass index and heavy leisure-time physical activity. Eur. J. Epidemiol. 29, 285–292. 10.1007/s10654-014-9887-2
    1. Salat D., Noyce A. J., Schrag A., Tolosa E. (2016). Challenges of modifying disease progression in prediagnostic Parkinson's disease. Lancet Neurol. 15, 637–648. 10.1016/S1474-4422(16)00060-0
    1. Salvatore M. F., Ai Y., Fischer B., Zhang A. M., Grondin R. C., Zhang Z., et al. . (2006). Point source concentration of GDNF may explain failure of phase II clinical trial. Exp. Neurol. 202, 497–505. 10.1016/j.expneurol.2006.07.015
    1. Sanchez-Ramos J. R., Michel P., Weiner W. J., Hefti F. (1988). Selective destruction of cultured dopaminergic neurons from fetal rat mesencephalon by 1-methyl-4-phenylpyridinium: cytochemical and morphological evidence. J. Neurochem. 50, 1934–1944. 10.1111/j.1471-4159.1988.tb02500.x
    1. Sano H., Chiken S., Hikida T., Kobayashi K., Nambu A. (2013). Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. J. Neurosci. 33, 7583–7594. 10.1523/JNEUROSCI.4932-12.2013
    1. Sano H., Yasoshima Y., Matsushita N., Kaneko T., Kohno K., Pastan I., et al. . (2003). Conditional ablation of striatal neuronal types containing dopamine D2 receptor disturbs coordination of basal ganglia function. J. Neurosci. 23, 9078–9088.
    1. Sasco A. J., Paffenbarger R. S., Jr., Gendre I., Wing A. L. (1992). The role of physical exercise in the occurrence of Parkinson's disease. Arch. Neurol. 49, 360–365. 10.1001/archneur.1992.00530280040020
    1. Sasi M., Vignoli B., Canossa M., Blum R. (2017). Neurobiology of local and intercellular BDNF signaling. Pflugers Arch. 469, 593–610. 10.1007/s00424-017-1964-4
    1. Savica R., Rocca W. A., Ahlskog J. E. (2010). When does Parkinson disease start? Arch Neurol. 67, 798–801. 10.1001/archneurol.2010.135
    1. Scalzo P., Kümmer A., Bretas T. L., Cardoso F., Teixeira A. L. (2010). Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson's disease. J. Neurol. 257, 540–545. 10.1007/s00415-009-5357-2
    1. Schallert T., Fleming S. M., Leasure J. L., Tillerson J. L., Bland S. T. (2000). CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39, 777–787. 10.1016/S0028-3908(00)00005-8
    1. Schallert T., Kozlowski D. A., Humm J. L., Cocke R. R. (1997). Use-dependent structural events in recovery of function. Adv. Neurol. 73, 229–238.
    1. Scholz B., Svensson M., Alm H., Sköld K., Fälth M., Kultima K., et al. . (2008). Striatal proteomic analysis suggests that first L-dopa dose equates to chronic exposure. PLoS ONE 3:e1589. 10.1371/journal.pone.0001589
    1. Schwarting R. K., Huston J. P. (1996). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog. Neurobiol. 50, 275–331. 10.1016/S0301-0082(96)00040-8
    1. Sconce M. D., Churchill M. J., Greene R. E., Meshul C. K. (2015). Intervention with exercise restores motor deficits but not nigrostriatal loss in a progressive MPTP mouse model of Parkinson's disease. Neuroscience 299, 156–174. 10.1016/j.neuroscience.2015.04.069
    1. Shah C., Beall E. B., Frankemolle A. M., Penko A., Phillips M. D., Lowe M. J., et al. . (2016). Exercise Therapy for parkinson's disease: pedaling rate is related to changes in motor connectivity. Brain Connect. 6, 25–36. 10.1089/brain.2014.0328
    1. Shi K., Liu X., Qiao D., Hou L. (2017). Effects of Treadmill Exercise on Spontaneous Firing Activities of Striatal Neurons in a Rat Model of Parkinson's Disease. Motor Control. 21, 58–71. 10.1123/mc.2015-0065
    1. Shih I. F., Liew Z., Krause N., Ritz B. (2016). Lifetime occupational and leisure time physical activity and risk of Parkinson's disease. Parkinsonism Relat. Disord. 28, 112–117. 10.1016/j.parkreldis.2016.05.007
    1. Shulman L. M., Katzel L. I., Ivey F. M., Sorkin J. D., Favors K., Anderson K. E., et al. . (2013). Randomized clinical trial of 3 types of physical exercise for patients with Parkinson disease. JAMA Neurol. 70, 183–190. 10.1001/jamaneurol.2013.646
    1. Singh A. M., Neva J. L., Staines W. R. (2014). Acute exercise enhances the response to paired associative stimulation-induced plasticity in the primary motor cortex. Exp. Brain Res. 232, 3675–3685. 10.1007/s00221-014-4049-z
    1. Singh A., Mewes K., Gross R. E., DeLong M. R., Obeso J. A., Papa S. M. (2016). Human striatal recordings reveal abnormal discharge of projection neurons in Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 113, 9629–9634. 10.1073/pnas.1606792113
    1. Slevin J. T., Gerhardt G. A., Smith C. D., Gash D. M., Kryscio R., Young B. (2005). Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J. Neurosurg. 102, 216–222. 10.3171/jns.2005.102.2.0216
    1. Smeyne M., Sladen P., Jiao Y., Dragatsis I., Smeyne R. J. (2015). HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta. Neuroscience 295, 23–38. 10.1016/j.neuroscience.2015.03.015
    1. Smith Y., Galvan A., Ellender T. J., Doig N., Villalba R. M., Huerta-Ocampo I., et al. . (2014). The thalamostriatal system in normal and diseased states. Front. Syst. Neurosci. 8:5. 10.3389/fnsys.2014.00005
    1. Song D. D., Haber S. N. (2000). Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting. J. Neurosci. 20, 5102–5114.
    1. Spenger C., Hyman C., Studer L., Egli M., Evtouchenko L., Jackson C., et al. . (1995). Effects of BDNF on dopaminergic, serotonergic, and GABAergic neurons in cultures of human fetal ventral mesencephalon. Exp. Neurol. 133, 50–63. 10.1006/exnr.1995.1007
    1. Spielman L. J., Little J. P., Klegeris A. (2016). Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull. 125, 19–29. 10.1016/j.brainresbull.2016.03.012
    1. Stanic D., Finkelstein D. I., Bourke D. W., Drago J., Horne M. K. (2003a). Timecourse of striatal re-innervation following lesions of dopaminergic SNpc neurons of the rat. Eur. J. Neurosci. 18, 1175–1188. 10.1046/j.1460-9568.2003.02800.x
    1. Stanic D., Parish C. L., Zhu W. M., Krstew E. V., Lawrence A. J., Drago J., et al. . (2003b). Changes in function and ultrastructure of striatal dopaminergic terminals that regenerate following partial lesions of the SNpc. J. Neurochem. 86, 329–343. 10.1046/j.1471-4159.2003.01843.x
    1. Stephens B., Mueller A. J., Shering A. F., Hood S. H., Taggart P., Arbuthnott G. W., et al. . (2005). Evidence of a breakdown of corticostriatal connections in Parkinson's disease. Neuroscience 132, 741–754. 10.1016/j.neuroscience.2005.01.007
    1. Subramaniam S. R., Chesselet M. F. (2013). Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog. Neurobiol. 106–107, 17–32. 10.1016/j.pneurobio.2013.04.004
    1. Sun M., Kong L., Wang X., Lu X. G., Gao Q., Geller A. I. (2005). Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson's disease. Brain Res. 1052, 119–129. 10.1016/j.brainres.2005.05.072
    1. Sung Y. H., Kim S. C., Hong H. P., Park C. Y., Shin M. S., Kim C. J., et al. . (2012). Treadmill exercise ameliorates dopaminergic neuronal loss through suppressing microglial activation in Parkinson's disease mice. Life Sci. 91, 1309–1316. 10.1016/j.lfs.2012.10.003
    1. Tajiri N., Yasuhara T., Shingo T., Kondo A., Yuan W., Kadota T., et al. . (2010). Exercise exerts neuroprotective effects on Parkinson's disease model of rats. Brain Res. 1310, 200–207. 10.1016/j.brainres.2009.10.075
    1. Takamatsu Y., Ishida A., Hamakawa M., Tamakoshi K., Jung C. G., Ishida K. (2010). Treadmill running improves motor function and alters dendritic morphology in the striatum after collagenase-induced intracerebral hemorrhage in rats. Brain Res. 1355, 165–173. 10.1016/j.brainres.2010.07.070
    1. Tamakoshi K., Ishida A., Takamatsu Y., Hamakawa M., Nakashima H., Shimada H., et al. . (2014). Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats. Behav. Brain Res. 260, 34–43. 10.1016/j.bbr.2013.11.034
    1. Tatton W. G., Kwan M. M., Verrier M. C., Seniuk N. A., Theriault E. (1990). MPTP produces reversible disappearance of tyrosine hydroxylase-containing retinal amacrine cells. Brain Res. 527, 21–31. 10.1016/0006-8993(90)91056-M
    1. Tecuapetla F., Jin X., Lima S. Q., Costa R. M. (2016). Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166, 703–715. 10.1016/j.cell.2016.06.032
    1. Thacker E. L., Chen H., Patel A. V., McCullough M. L., Calle E. E., Thun M. J., et al. . (2008). Recreational physical activity and risk of Parkinson's disease. Mov. Disord. 23, 69–74. 10.1002/mds.21772
    1. Tillerson J. L., Caudle W. M., Reverón M. E., Miller G. W. (2003). Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience 119, 899–911. 10.1016/S0306-4522(03)00096-4
    1. Tillerson J. L., Cohen A. D., Caudle W. M., Zigmond M. J., Schallert T., Miller G. W. (2002). Forced nonuse in unilateral parkinsonian rats exacerbates injury. J. Neurosci. 22, 6790–6799.
    1. Tillerson J. L., Cohen A. D., Philhower J., Miller G. W., Zigmond M. J., Schallert T. (2001). Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J. Neurosci. 21, 4427–4435.
    1. Tomac A., Lindqvist E., Lin L. F., Ogren S. O., Young D., Hoffer B. J., et al. . (1995). Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335–339. 10.1038/373335a0
    1. Toy W. A., Petzinger G. M., Leyshon B. J., Akopian G. K., Walsh J. P., Hoffman M. V., et al. . (2014). Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Neurobiol. Dis. 63, 201–209. 10.1016/j.nbd.2013.11.017
    1. Tremblay L., Worbe Y., Thobois S., Sgambato-Faure V., Féger J. (2015). Selective dysfunction of basal ganglia subterritories: from movement to behavioral disorders. Mov. Disord. 30, 1155–1170. 10.1002/mds.26199
    1. Tritsch N. X., Sabatini B. L. (2012). Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76, 33–50. 10.1016/j.neuron.2012.09.023
    1. Tseng K. Y., Kasanetz F., Kargieman L., Riquelme L. A., Murer M. G. (2001). Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions. J. Neurosci. 21, 6430–6439.
    1. Tsou Y. H., Shih C. T., Ching C. H., Huang J. Y., Jen C. J., Yu L., et al. . (2015). Treadmill exercise activates Nrf2 antioxidant system to protect the nigrostriatal dopaminergic neurons from MPP+ toxicity. Exp. Neurol. 263, 50–62. 10.1016/j.expneurol.2014.09.021
    1. Tuon T., Valvassori S. S., Dal Pont G. C., Paganini C. S., Pozzi B. G., Luciano T. F., et al. . (2014). Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson's disease. Brain Res Bull. 108, 106–112 10.1016/j.brainresbull.2014.09.006
    1. Tuon T., Valvassori S. S., Lopes-Borges J., Luciano T., Trom C. B., Silva L. A., et al. . (2012). Physical training exerts neuroprotective effects in the regulation of neurochemical factors in an animal model of Parkinson's disease. Neuroscience 227, 305–312. 10.1016/j.neuroscience.2012.09.063
    1. Ungerstedt U. (1971a). Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. Suppl. 367, 69–93. 10.1111/j.1365-201X.1971.tb11000.x
    1. Ungerstedt U. (1971b). Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. Suppl. 367, 95–122. 10.1111/j.1365-201X.1971.tb11001.x
    1. van Praag H., Christie B. R., Sejnowski T. J., Gage F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U.S.A. 96, 13427–13431. 10.1073/pnas.96.23.13427
    1. van Praag H., Shubert T., Zhao C., Gage F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685. 10.1523/JNEUROSCI.1731-05.2005
    1. VanLeeuwen J.-E., Petzinger G. M., Walsh J. P., Akopian G. K., Vuckovic M., Jakowec M. W. (2010). Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J. Neurosci. Res. 88, 650–668. 10.1002/jnr.22216
    1. Vigers A. J., Amin D. S., Talley-Farnham T., Gorski J. A., Xu B., Jones K. R. (2012). Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior. Neuroscience 212, 1–18. 10.1016/j.neuroscience.2012.03.031
    1. Villalba R. M., Smith Y. (2011). Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated Parkinsonian monkeys. J. Comp. Neurol. 519, 989–1005. 10.1002/cne.22563
    1. Villalba R. M., Mathai A., Smith Y. (2015). Morphological changes of glutamatergic synapses in animal models of Parkinson's disease. Front. Neuroanat. 9:117. 10.3389/fnana.2015.00117
    1. Vina J., Sanchis-Gomar F., Martinez-Bello V., Gomez-Cabrera M. C. (2012). Exercise acts as a drug; the pharmacological benefits of exercise. Br. J. Pharmacol. 167, 1–12. 10.1111/j.1476-5381.2012.01970.x
    1. Vingerhoets F. J., Snow B. J., Tetrud J. W., Langston J. W., Schulzer M., Calne D. B. (1994). Positron emission tomographic evidence for progression of human MPTP-induced dopaminergic lesions. Ann. Neurol. 36, 765–770. 10.1002/ana.410360513
    1. Voss M. W., Vivar C., Kramer A. F., van Praag H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn. Sci. 17, 525–544. 10.1016/j.tics.2013.08.001
    1. Walker F. O. (2007). Huntington's disease. Lancet 369, 218–228. 10.1016/S0140-6736(07)60111-1
    1. Wang Z., Guo Y., Myers K. G., Heintz R., Holschneider D. P. (2015a). Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise. Neurobiol. Dis. 77, 71–87. 10.1016/j.nbd.2015.02.020
    1. Wang Z., Guo Y., Myers K. G., Heintz R., Peng Y. H., Maarek J. M., et al. . (2015b). Exercise alters resting-state functional connectivity of motor circuits in parkinsonian rats. Neurobiol. Aging 36, 536–544. 10.1016/j.neurobiolaging.2014.08.016
    1. Wei W., Ding S., Zhou F. M. (2017). Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum. J. Neurophysiol. 117, 987–999. 10.1152/jn.00683.2016
    1. Whitehead G., Regan P., Whitcomb D. J., Cho K. (2017). Ca2+-permeable AMPA receptor: a new perspective on amyloid-beta mediated pathophysiology of Alzheimer's disease. Neuropharmacology 112, 221–227. 10.1016/j.neuropharm.2016.08.022
    1. Willard A. M., Bouchard R. S., Gittis A. H. (2015). Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice. Neuroscience 301, 254–267. 10.1016/j.neuroscience.2015.05.068
    1. Wilson C. J., Groves P. M. (1980). Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. J. Comp. Neurol. 194, 599–615. 10.1002/cne.901940308
    1. Wilson C. J., Kawaguchi Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410.
    1. Xenias H. S., Ibáñez-Sandoval O., Koós T., Tepper J. M. (2015). Are striatal tyrosine hydroxylase interneurons dopaminergic? J. Neurosci. 35, 6584–6599. 10.1523/JNEUROSCI.0195-15.2015
    1. Xu B., Zang K., Ruff N. L., Zhang Y. A., McConnell S. K., Stryker M. P., et al. . (2000). Cortical degeneration in the absence of neurotrophin signaling: dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron 26, 233–245. 10.1016/S0896-6273(00)81153-8
    1. Xu Q., Park Y., Huang X., Hollenbeck A., Blair A., Schatzkin A., et al. . (2010). Physical activities and future risk of Parkinson disease. Neurology 75, 341–348. 10.1212/WNL.0b013e3181ea1597
    1. Yan Q., Matheson C., Lopez O. T. (1995). In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373, 341–344. 10.1038/373341a0
    1. Yang F., Trolle Lagerros Y., Bellocco R., Adami H. O., Fang F., Pedersen N. L., et al. . (2015). Physical activity and risk of Parkinson's disease in the Swedish National March Cohort. Brain 138, 269–275. 10.1093/brain/awu323
    1. Yoon M. C., Shin M. S., Kim T. S., Kim B. K., Ko I. G., Sung Y. H., et al. . (2007). Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson's rats. Neurosci. Lett. 423, 12–17. 10.1016/j.neulet.2007.06.031
    1. Yung K. K., Bolam J. P., Smith A. D., Hersch S. M., Ciliax B. J., Levey A. I. (1995). Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65, 709–730. 10.1016/0306-4522(94)00536-E
    1. Zagrebelsky M., Korte M. (2014). Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 76(Pt C), 628–638. 10.1016/j.neuropharm.2013.05.029
    1. Zaja-Milatovic S., Milatovic D., Schantz A. M., Zhang J., Montine K. S., Samii A., et al. . (2005). Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 64, 545–547. 10.1212/01.WNL.0000150591.33787.A4
    1. Zhang Z. X., Roman G. C., Hong Z., Wu C. B., Qu Q. M., Huang J. B., et al. . (2005). Parkinson's disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet 365, 595–597. 10.1016/S0140-6736(05)70801-1
    1. Zhou F. M. (2017). The substantia nigra pars reticulata, in Handbook of Basal Ganglia Structure and Function, 2nd Edn., eds Steiner H., Tseng K. (New York, NY: Elsevier; ), 293–316.
    1. Zhou F. M., Wilson C., Dani J. A. (2003). Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems. Neuroscientist 9, 23–36. 10.1177/1073858402239588
    1. Zhou Q. Y., Palmiter R. D. (1995). Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83, 1197–1209. 10.1016/0092-8674(95)90145-0
    1. Zigmond M. J., Cameron J. L., Leak R. K., Mirnics K., Russell V. A., Smeyne R. J., et al. . (2009). Triggering endogenous neuroprotective processes through exercise in models of dopamine deficiency. Parkinsonism Relat. Disord. 15(Suppl. 3), S42–S45. 10.1016/S1353-8020(09)70778-3
    1. Zoladz J. A., Majerczak J., Zeligowska E., Mencel J., Jaskolski A., Jaskolska A., et al. . (2014). Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in Parkinson's disease patients. J. Physiol. Pharmacol. 65, 441–448.
    1. Zuccato C., Cattaneo E. (2007). Role of brain-derived neurotrophic factor in Huntington's disease. Prog. Neurobiol. 81, 294–330. 10.1016/j.pneurobio.2007.01.003

Source: PubMed

3
Subscribe