Fluid Therapy: Double-Edged Sword during Critical Care?

Jan Benes, Mikhail Kirov, Vsevolod Kuzkov, Mitja Lainscak, Zsolt Molnar, Gorazd Voga, Xavier Monnet, Jan Benes, Mikhail Kirov, Vsevolod Kuzkov, Mitja Lainscak, Zsolt Molnar, Gorazd Voga, Xavier Monnet

Abstract

Fluid therapy is still the mainstay of acute care in patients with shock or cardiovascular compromise. However, our understanding of the critically ill pathophysiology has evolved significantly in recent years. The revelation of the glycocalyx layer and subsequent research has redefined the basics of fluids behavior in the circulation. Using less invasive hemodynamic monitoring tools enables us to assess the cardiovascular function in a dynamic perspective. This allows pinpointing even distinct changes induced by treatment, by postural changes, or by interorgan interactions in real time and enables individualized patient management. Regarding fluids as drugs of any other kind led to the need for precise indication, way of administration, and also assessment of side effects. We possess now the evidence that patient centered outcomes may be altered when incorrect time, dose, or type of fluids are administered. In this review, three major features of fluid therapy are discussed: the prediction of fluid responsiveness, potential harms induced by overzealous fluid administration, and finally the problem of protocol-led treatments and their timing.

Figures

Figure 1
Figure 1
Cardiac function curve. There is a family of cardiac function curves depending on the ventricular contractility. If the ventricles are functioning on the steep part of cardiac function curve, changes in cardiac preload induced by mechanical ventilation, end-expiratory occlusion (EEO), passive leg raising (PLR), or “mini fluid challenge” result in significant changes in stroke volume. This is not the case if the ventricles are functioning on the steep part of cardiac function curve.
Figure 2
Figure 2
Decision-making algorithm of fluid administration. Very initial phase of septic shock, when no fluid has been administered yet: in case of haemorrhagic shock or in case of hypovolemic shock due to diarrhoea, vomiting, or ketoacidosis, for instance.
Figure 3
Figure 3
The risks of insufficient and excessive fluid resuscitation. GIPS—global increased permeability syndrome.
Figure 4
Figure 4
Four phases of hemodynamic treatment in relation to cumulative fluid balance.
Figure 5
Figure 5
Decision algorithm for fluid loading in optimization phase.

References

    1. Monnet X., Teboul J.-L. Assessment of volume responsiveness during mechanical ventilation: recent advances. Critical Care. 2013;17(2, article 217) doi: 10.1186/cc12526.
    1. Jozwiak M., Silva S., Persichini R., et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Critical Care Medicine. 2013;41(2):472–480. doi: 10.1097/ccm.0b013e31826ab377.
    1. Vincent J. L., Sakr Y., Sprung C. L., et al. Sepsis occurrence in acutely Ill patients investigators: sepsis in European intensive care units: results of the SOAP study. Critical Care Medicine. 2006;34(2):344–353.
    1. Acheampong A., Vincent J. A positive fluid balance is an independent prognostic factor in patients with sepsis. Critical Care. 2015;19, article 251 doi: 10.1186/s13054-015-0970-1.
    1. Cecconi M., Hofer C., Teboul J., et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Medicine. 2015;41(9):1529–1537. doi: 10.1007/s00134-015-3850-x.
    1. Marik P. E., Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Critical Care Medicine. 2013;41(7):1774–1781. doi: 10.1097/CCM.0b013e31828a25fd.
    1. Marik P. E. Hemodynamic parameters to guide fluid therapy. Transfusion Alternatives in Transfusion Medicine. 2010;11(3):102–112. doi: 10.1111/j.1778-428X.2010.01133.x.
    1. Marik P. E., Baram M., Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–178. doi: 10.1378/chest.07-2331.
    1. Richard C., Monnet X., Teboul J.-L. Pulmonary artery catheter monitoring in 2011. Current Opinion in Critical Care. 2011;17(3):296–302. doi: 10.1097/MCC.0b013e3283466b85.
    1. Marik P. E., Monnet X., Teboul J.-L. Hemodynamic parameters to guide fluid therapy. Annals of Intensive Care. 2011;1(1, article 1) doi: 10.1186/2110-5820-1-1.
    1. García X., Pinsky M. R. Clinical applicability of functional hemodynamic monitoring. Annals of Intensive Care. 2011;1, article 35 doi: 10.1186/2110-5820-1-35.
    1. Michard F., Boussat S., Chemla D., et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. American Journal of Respiratory and Critical Care Medicine. 2000;162(1):134–138. doi: 10.1164/ajrccm.162.1.9903035.
    1. Marik P. E., Cavallazzi R., Vasu T., Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Critical Care Medicine. 2009;37(9):2642–2647. doi: 10.1097/ccm.0b013e3181a590da.
    1. Heenen S., De Backer D., Vincent J.-L. How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Critical Care. 2006;10(4, article R102) doi: 10.1186/cc4970.
    1. De Backer D., Heenen S., Piagnerelli M., Koch M., Vincent J.-L. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Medicine. 2005;31(4):517–523. doi: 10.1007/s00134-005-2586-4.
    1. Monnet X., Bleibtreu A., Ferré A., et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in Patients with low respiratory system compliance. Critical Care Medicine. 2012;40(1):152–157. doi: 10.1097/CCM.0b013e31822f08d7.
    1. De Backer D., Taccone F. S., Holsten R., Ibrahimi F., Vincent J.-L. Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology. 2009;110(5):1092–1097. doi: 10.1097/aln.0b013e31819db2a1.
    1. Renner J., Gruenewald M., Quaden R., et al. Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model. Critical Care Medicine. 2009;37(2):650–658. doi: 10.1097/CCM.0b013e3181959864.
    1. Mahjoub Y., Lejeune V., Muller L., et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. British Journal of Anaesthesia. 2014;112(4):681–685. doi: 10.1093/bja/aet442.
    1. Benes J., Zatloukal J., Kletecka J., Simanova A., Haidingerova L., Pradl R. Respiratory induced dynamic variations of stroke volume and its surrogates as predictors of fluid responsiveness: applicability in the early stages of specific critical states. Journal of Clinical Monitoring and Computing. 2014;28(3):225–231. doi: 10.1007/s10877-013-9524-8.
    1. Feissel M., Michard F., Faller J.-P., Teboul J.-L. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Medicine. 2004;30(9):1834–1837. doi: 10.1007/s00134-004-2233-5.
    1. Vieillard-Baron A., Chergui K., Rabiller A., et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Medicine. 2004;30(9):1734–1739. doi: 10.1007/s00134-004-2361-y.
    1. Airapetian N., Maizel J., Alyamani O., et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Critical Care. 2015;19(1, article 400) doi: 10.1186/s13054-015-1100-9.
    1. Monnet X., Osman D., Ridel C., Lamia B., Richard C., Teboul J.-L. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Critical Care Medicine. 2009;37(3):951–956. doi: 10.1097/CCM.0b013e3181968fe1.
    1. Silva S., Jozwiak M., Teboul J.-L., Persichini R., Richard C., Monnet X. End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome. Critical Care Medicine. 2013;41(7):1692–1701. doi: 10.1097/ccm.0b013e31828a2323.
    1. Vincent J.-L., Weil M. H. Fluid challenge revisited. Critical Care Medicine. 2006;34(5):1333–1337. doi: 10.1097/01.CCM.0000214677.76535.A5.
    1. Muller L., Toumi M., Bousquet P.-J., et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;115(3):541–547. doi: 10.1097/aln.0b013e318229a500.
    1. Monnet X., Teboul J.-L. Passive leg raising. Intensive Care Medicine. 2008;34(4):659–663. doi: 10.1007/s00134-008-0994-y.
    1. Monnet X., Rienzo M., Osman D., et al. Passive leg raising predicts fluid responsiveness in the critically ill. Critical Care Medicine. 2006;34(5):1402–1407. doi: 10.1097/01.CCM.0000215453.11735.06.
    1. Cavallaro F., Sandroni C., Marano C., et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Medicine. 2010;36(9):1475–1483. doi: 10.1007/s00134-010-1929-y.
    1. Boyd J. H., Forbes J., Nakada T.-A., Walley K. R., Russell J. A. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Critical Care Medicine. 2011;39(2):259–265. doi: 10.1097/ccm.0b013e3181feeb15.
    1. Vellinga N. A. R., Ince C., Boerma E. C. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiology. 2013;13, article 17 doi: 10.1186/1471-2253-13-17.
    1. Monnet X., Teboul J. Passive leg raising: five rules, not a drop of fluid! Critical Care. 2015;19, article 18 doi: 10.1186/s13054-014-0708-5.
    1. Jabot J., Teboul J.-L., Richard C., Monnet X. Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Medicine. 2009;35(1):85–90. doi: 10.1007/s00134-008-1293-3.
    1. Monge García M. I., Gil Cano A., Gracia Romero M., Monterroso Pintado R., Pérez Madueño V., Díaz Monrové J. C. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Annals of Intensive Care. 2012;2, article 9 doi: 10.1186/2110-5820-2-9.
    1. Monnet X., Bataille A., Magalhaes E., et al. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Medicine. 2013;39(1):93–100. doi: 10.1007/s00134-012-2693-y.
    1. Malbrain M. L. N. G., Reuter D. A. Assessing fluid responsiveness with the passive leg raising maneuver in patients with increased intra-abdominal pressure: be aware that not all blood returns! Critical Care Medicine. 2010;38(9):1912–1915. doi: 10.1097/ccm.0b013e3181f1b6a2.
    1. Mahjoub Y., Touzeau J., Airapetian N., et al. The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension. Critical Care Medicine. 2010;38(9):1824–1829. doi: 10.1097/ccm.0b013e3181eb3c21.
    1. Benes J., Giglio M., Brienza N., Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Critical Care. 2014;18(5, article 584) doi: 10.1186/s13054-014-0584-z.
    1. Cecconi M., Corredor C., Arulkumaran N., et al. Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Critical Care. 2013;17(2, article 209) doi: 10.1186/cc11823.
    1. Hamilton M. A., Cecconi M., Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesthesia & Analgesia. 2011;112(6):1392–1402. doi: 10.1213/ane.0b013e3181eeaae5.
    1. Teboul J.-L., Monnet X. Detecting volume responsiveness and unresponsiveness in intensive care unit patients: two different problems, only one solution. Critical Care. 2009;13(4, article 175) doi: 10.1186/cc7979.
    1. Day R. E., Kitchen P., Owen D. S., et al. Human aquaporins: regulators of transcellular water flow. Biochimica et Biophysica Acta. 2014;1840(5):1492–1506. doi: 10.1016/j.bbagen.2013.09.033.
    1. Weinbaum S., Tarbell J. M., Damiano E. R. The structure and function of the endothelial glycocalyx layer. Annual Review of Biomedical Engineering. 2007;9:121–167. doi: 10.1146/annurev.bioeng.9.060906.151959.
    1. Woodcock T. E., Woodcock T. M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. British Journal of Anaesthesia. 2012;108(3):384–394. doi: 10.1093/bja/aer515.
    1. Levick J. R., Michel C. C. Microvascular fluid exchange and the revised Starling principle. Cardiovascular Research. 2010;87(2):198–210. doi: 10.1093/cvr/cvq062.
    1. Dellinger R. P., Levy M. M., Rhodes A., et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Critical Care Medicine. 2013;41(2):580–637. doi: 10.1097/ccm.0b013e31827e83af.
    1. Kozek-Langenecker S. A., Afshari A., Albaladejo P., et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. European Journal of Anaesthesiology. 2013;30(6):270–382. doi: 10.1097/eja.0b013e32835f4d5b.
    1. Tenner S., Baillie J., DeWitt J., Vege S. S. American college of gastroenterology guideline: management of acute pancreatitis. The American Journal of Gastroenterology. 2013;108(9):1400–1415. doi: 10.1038/ajg.2013.218.
    1. Malbrain M. L. N. G., Roberts D. J., Sugrue M., et al. The polycompartment syndrome: a concise state-of-the-art review. Anaesthesiology Intensive Therapy. 2014;46(5):433–450. doi: 10.5603/ait.2014.0064.
    1. Hoste E. A., Maitland K., Brudney C. S., et al. Four phases of intravenous fluid therapy: a conceptual model. British Journal of Anaesthesia. 2014;113(5):740–747.
    1. Malbrain M. L. N. G., Marik P. E., Witters I., et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiology Intensive Therapy. 2014;46(5):361–380. doi: 10.5603/ait.2014.0060.
    1. Kirov M. Y. Pulmonary edema in hypovolemic patients: how can we predict it in clinical practice? Critical Care Medicine. 2012;40(3):994–995. doi: 10.1097/ccm.0b013e31823b8937.
    1. Bundgaard-Nielsen M., Secher N. H., Kehlet H. ‘Liberal’ vs. ‘restrictive’ perioperative fluid therapy—a critical assessment of the evidence. Acta Anaesthesiologica Scandinavica. 2009;53(7):843–851. doi: 10.1111/j.1399-6576.2009.02029.x.
    1. RENAL Replacement Therapy Study Investigators, Bellomo R., Cass A., et al. An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. Augmented level of replacement therapy trial. Critical Care Medicine. 2012;40(6):1753–1760. doi: 10.1097/CCM.0b013e318246b9c6.
    1. De Laet I., Deeren D., Schoonheydt K., Van Regenmortel N., Dits H., Malbrain M. L. Renal replacement therapy with net fluid removal lowers intra-abdominal pressure and volumetric indices in critically ill patients. Annals of Intensive Care. 2012;2(supplement 1, article S20)
    1. Doherty M., Buggy D. J. Intraoperative fluids: how much is too much? British Journal of Anaesthesia. 2012;109(1):69–79. doi: 10.1093/bja/aes171.
    1. Jacob M., Chappell D., Conzen P., Finsterer U., Rehm M. Blood volume is normal after pre-operative overnight fasting. Acta Anaesthesiologica Scandinavica. 2008;52(4):522–529. doi: 10.1111/j.1399-6576.2008.01587.x.
    1. Jackson R., Reid J. A., Thorburn J. Volume preloading is not essential to prevent spinal-induced hypotension at caesarean section. British Journal of Anaesthesia. 1995;75(3):262–265. doi: 10.1093/bja/75.3.262.
    1. Marik P. E. Iatrogenic salt water drowning and the hazards of a high central venous pressure. Annals of Intensive Care. 2014;4, article 21 doi: 10.1186/s13613-014-0021-0.
    1. Chappell D., Jacob M., Becker B. F., Hofmann-Kiefer K., Conzen P., Rehm M. Expedition glycocalyx: a newly discovered ‘Great Barrier Reef’. Anaesthesist. 2008;57(10):959–969. doi: 10.1007/s00101-008-1445-4.
    1. Brandstrup B., Tønnesen H., Beier-Holgersen R., et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Annals of Surgery. 2003;238(5):641–648. doi: 10.1097/01.sla.0000094387.50865.23.
    1. Finfer S., Bellomo R., Boyce N., French J., Myburgh J., Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. The New England Journal of Medicine. 2004;350(22):2247–2256. doi: 10.1056/nejmoa040232.
    1. Myburgh J. A., Finfer S., Bellomo R., et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. The New England Journal of Medicine. 2012;367(20):1901–1911. doi: 10.1056/nejmoa1209759.
    1. Shaw A. D., Bagshaw S. M., Goldstein S. L., et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to plasma-lyte. Annals of Surgery. 2012;255(5):821–829. doi: 10.1097/SLA.0b013e31825074f5.
    1. Yunos N. M., Bellomo R., Hegarty F. C., Story D., Ho L., Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. Journal of the American Medical Association. 2012;308(15):1566–1572. doi: 10.1001/jama.2012.13356.
    1. Boulain T., Boisrame-Helms J., Ehrmann S., et al. Volume expansion in the first 4 days of shock: a prospective multicentre study in 19 French intensive care units. Intensive Care Medicine. 2015;41(2):248–256. doi: 10.1007/s00134-014-3576-1.
    1. Cannesson M., Pestel G., Ricks C., Hoeft A., Perel A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Critical Care. 2011;15(4, article R197) doi: 10.1186/cc10364.
    1. Srinivasa S., Kahokehr A., Soop M., Taylor M., Hill A. G. Goal-directed fluid therapy—a survey of anaesthetists in the UK, USA, Australia and New Zealand. BMC Anesthesiology. 2013;13, article 5 doi: 10.1186/1471-2253-13-5.
    1. ARISE Investigators, ANZICS Clinical Trials, Peake S. L., et al. Goal-directed resuscitation for patients with early septic shock. The New England Journal of Medicine. 2014;371(16):1496–1506. doi: 10.1056/nejmoa1404380.
    1. Yealy D. M., Kellum J. A., Huang D. T., et al. A randomized trial of protocol-based care for early septic shock. The New England Journal of Medicine. 2014;370(18):1683–1693.
    1. Rivers E., Nguyen B., Havstad S., et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. The New England Journal of Medicine. 2001;345(19):1368–1377. doi: 10.1056/nejmoa010307.
    1. Sandham J. D., Hull R. D., Brant R. F., et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. The New England Journal of Medicine. 2003;348(1):5–14. doi: 10.1056/nejmoa021108.
    1. Takala J., Ruokonen E., Tenhunen J. J., Parviainen I., Jakob S. M. Early non-invasive cardiac output monitoring in hemodynamically unstable intensive care patients: a multi-center randomized controlled trial. Critical Care. 2011;15(3, article R148) doi: 10.1186/cc10273.
    1. Zhang Z., Ni H., Qian Z. Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial. Intensive Care Medicine. 2015;41(3):444–451. doi: 10.1007/s00134-014-3638-4.
    1. Boulain T., Cecconi M. Can one size fit all? The fine line between fluid overload and hypovolemia. Intensive Care Medicine. 2015;41(3):544–546. doi: 10.1007/s00134-015-3683-7.
    1. Huber W., Henschel B., Schmid R. M., et al. Comments on Zhang et al.: Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial. Intensive Care Medicine. 2015;41(7):1389–1390. doi: 10.1007/s00134-015-3819-9.
    1. Pearse R. M., Harrison D. A., MacDonald N., et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. The Journal of the American Medical Association. 2014;311(21):2181–2190. doi: 10.1001/jama.2014.5305.
    1. Hoste E. A., Maitland K., Brudney C. S., et al. Four phases of intravenous fluid therapy: a conceptual model. British Journal of Anaesthesia. 2014;113(5):740–747. doi: 10.1093/bja/aeu300.
    1. Vincent J.-L., De Backer D. Circulatory shock. The New England Journal of Medicine. 2013;369(18):1726–1734. doi: 10.1056/nejmra1208943.
    1. Morrison C. A., Carrick M. M., Norman M. A., et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. Journal of Trauma. 2011;70(3):652–663. doi: 10.1097/ta.0b013e31820e77ea.
    1. Maitland K., Kiguli S., Opoka R. O., et al. Mortality after fluid bolus in African children with severe infection. The New England Journal of Medicine. 2011;364(26):2483–2495. doi: 10.1056/nejmoa1101549.
    1. Shoemaker W. C., Appel P. L., Kram H. B., Waxman K., Lee T.-S. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94(6):1176–1186. doi: 10.1378/chest.94.6.1176.
    1. Kern J. W., Shoemaker W. C. Meta-analysis of hemodynamic optimization in high-risk patients. Critical Care Medicine. 2002;30(8):1686–1692. doi: 10.1097/00003246-200208000-00002.
    1. Alía I., Esteban A., Gordo F., et al. A randomized and controlled trial of the effect of treatment aimed at maximizing oxygen delivery in patients with severe sepsis or septic shock. Chest. 1999;115(2):453–461. doi: 10.1378/chest.115.2.453.
    1. Gattinoni L., Brazzi L., Pelosi P., et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. The New England Journal of Medicine. 1995;333(16):1025–1032. doi: 10.1056/nejm199510193331601.
    1. Bai X., Yu W., Ji W., et al. Early versus delayed administration of norepinephrine in patients with septic shock. Critical Care. 2014;18(5, article 532) doi: 10.1186/s13054-014-0532-y.
    1. Chytra I., Pradl R., Bosman R., Pelnář P., Kasal E., Židková A. Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Critical Care. 2007;11(1, article R24) doi: 10.1186/cc5703.
    1. Velmahos G. C., Demetriades D., Shoemaker W. C., et al. Endpoints of resuscitation of critically injured patients: normal or supranormal? A prospective randomized trial. Annals of Surgery. 2000;232(3):409–418. doi: 10.1097/00000658-200009000-00013.
    1. Grocott M. P. W., Dushianthan A., Hamilton M. A., et al. Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a cochrane systematic review. British Journal of Anaesthesia. 2013;111(4):535–548. doi: 10.1093/bja/aet155.
    1. Challand C., Struthers R., Sneyd J. R., et al. Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. British Journal of Anaesthesia. 2012;108(1):53–62. doi: 10.1093/bja/aer273.
    1. Ackland G. L., Iqbal S., Paredes L. G., et al. Individualised oxygen delivery targeted haemodynamic therapy in high-risk surgical patients: a multicentre, randomised, double-blind, controlled, mechanistic trial. The Lancet Respiratory Medicine. 2015;3(1):33–41. doi: 10.1016/s2213-2600(14)70205-x.
    1. Salzwedel C., Puig J., Carstens A., et al. Perioperative goal-directed hemodynamic therapy based on radial arterial pulse pressure variation and continuous cardiac index trending reduces postoperative complications after major abdominal surgery: a multi-center, prospective, randomized study. Critical Care. 2013;17(5, article R191) doi: 10.1186/cc12885.
    1. Cannesson M., Le Manach Y., Hofer C. K., et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a ‘gray zone’ approach. Anesthesiology. 2011;115(2):231–241. doi: 10.1097/aln.0b013e318225b80a.
    1. Murphy C. V., Schramm G. E., Doherty J. A., et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009;136(1):102–109. doi: 10.1378/chest.08-2706.
    1. Wiedemann H. P., Wheeler A. P., Bernard G. R., et al. Comparison of two fluid-management strategies in acute lung injury. The New England Journal of Medicine. 2006;354(24):2564–2575. doi: 10.1056/nejmoa062200.
    1. Grissom C. K., Hirshberg E. L., Dickerson J. B., et al. Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome. Critical Care Medicine. 2015;43(2):288–295. doi: 10.1097/ccm.0000000000000715.
    1. Chawla L. S., Davison D. L., Brasha-Mitchell E., et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Critical Care. 2013;17(5, article R207) doi: 10.1186/cc13015.
    1. Martin G. S., Moss M., Wheeler A. P., Mealer M., Morris J. A., Bernard G. R. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Critical Care Medicine. 2005;33(8):1681–1687. doi: 10.1097/01.CCM.0000171539.47006.02.
    1. Cordemans C., De Laet I., Van Regenmortel N., et al. Aiming for a negative fluid balance in patients with acute lung injury and increased intra-abdominal pressure: a pilot study looking at the effects of PAL-treatment. Annals of Intensive Care. 2012;2(supplement 1, article S15) doi: 10.1186/2110-5820-2-s1-s15.
    1. Rosner M. H., Ostermann M., Murugan R., et al. Indications and management of mechanical fluid removal in critical illness. British Journal of Anaesthesia. 2014;113(5):764–771. doi: 10.1093/bja/aeu297.
    1. Vincent J.-L., Hall J. B., Slutsky A. S. Ten big mistakes in intensive care medicine. Intensive Care Medicine. 2015;41(3):505–507. doi: 10.1007/s00134-014-3570-7.

Source: PubMed

3
Subscribe