Performance of the Hypotension Prediction Index with non-invasive arterial pressure waveforms in non-cardiac surgical patients

Kamal Maheshwari, Sai Buddi, Zhongping Jian, Jos Settels, Tetsuya Shimada, Barak Cohen, Daniel I Sessler, Feras Hatib, Kamal Maheshwari, Sai Buddi, Zhongping Jian, Jos Settels, Tetsuya Shimada, Barak Cohen, Daniel I Sessler, Feras Hatib

Abstract

An algorithm derived from machine learning uses the arterial waveform to predict intraoperative hypotension some minutes before episodes, possibly giving clinician's time to intervene and prevent hypotension. Whether the Hypotension Prediction Index works well with noninvasive arterial pressure waveforms remains unknown. We therefore evaluated sensitivity, specificity, and positive predictive value of the Index based on non-invasive arterial waveform estimates. We used continuous hemodynamic data measured from ClearSight (formerly Nexfin) noninvasive finger blood pressure monitors in surgical patients. We re-evaluated data from a trial that included 320 adults ≥ 45 years old designated ASA physical status 3 or 4 who had moderate-to-high-risk non-cardiac surgery with general anesthesia. We calculated sensitivity and specificity for predicting hypotension, defined as mean arterial pressure ≤ 65 mmHg for at least 1 min, and characterized the relationship with receiver operating characteristics curves. We also evaluated the number of hypotensive events at various ranges of the Hypotension Prediction Index. And finally, we calculated the positive predictive value for hypotension episodes when the Prediction Index threshold was 85. The algorithm predicted hypotension 5 min in advance, with a sensitivity of 0.86 [95% confidence interval 0.82, 0.89] and specificity 0.86 [0.82, 0.89]. At 10 min, the sensitivity was 0.83 [0.79, 0.86] and the specificity was 0.83 [0.79, 0.86]. And at 15 min, the sensitivity was 0.75 [0.71, 0.80] and the specificity was 0.75 [0.71, 0.80]. The positive predictive value of the algorithm prediction at an Index threshold of 85 was 0.83 [0.79, 0.87]. A Hypotension Prediction Index of 80-89 provided a median of 6.0 [95% confidence interval 5.3, 6.7] minutes warning before mean arterial pressure decreased to < 65 mmHg. The Hypotension Prediction Index, which was developed and validated with invasive arterial waveforms, predicts intraoperative hypotension reasonably well from non-invasive estimates of the arterial waveform. Hypotension prediction, along with appropriate management, can potentially reduce intraoperative hypotension. Being able to use the non-invasive pressure waveform will widen the range of patients who might benefit.Clinical Trial Number: ClinicalTrials.gov NCT02872896.

Keywords: Hypotension Prediction Index; Hypotension prediction; Intraoperative hypotension; Machine learning; Non-invasive blood pressure.

Conflict of interest statement

KM, DS are consultant for Edwards Lifesciences. SB, ZJ, JS, and FH are employees of Edwards Lifesciences.

Figures

Fig. 1
Fig. 1
Effect of clinical intervention on HPI and MAP. HPI Hypotension Prediction Index, MAP mean arterial pressure
Fig. 2
Fig. 2
ROC plot at 5, 10, and 15-min for the entire cohort of 305 patients
Fig. 3
Fig. 3
Hypotensive, MAP MAP mean arterial pressure

References

    1. Botto F, Alonso-Coello P, Chan MT, Villar JC, Xavier D, Srinathan S, Guyatt G, Cruz P, Graham M, Wang CY, Berwanger O, Pearse RM, Biccard BM, Abraham V, Malaga G, Hillis GS, Rodseth RN, Cook D, Polanczyk CA, Szczeklik W, Sessler DI, Sheth T, Ackland GL, Leuwer M, Garg AX, Lemanach Y, Pettit S, Heels-Ansdell D, Luratibuse G, Walsh M, Sapsford R, Schunemann HJ, Kurz A, Thomas S, Mrkobrada M, Thabane L, Gerstein H, Paniagua P, Nagele P, Raina P, Yusuf S, Devereaux PJ, Devereaux PJ, Sessler DI, Walsh M, Guyatt G, McQueen MJ, Bhandari M, Cook D, Bosch J, Buckley N, Yusuf S, Chow CK, Hillis GS, Halliwell R, Li S, Lee VW, Mooney J, Polanczyk CA, Furtado MV, Berwanger O, Suzumura E, Santucci E, Leite K, Santo JA, Jardim CA, Cavalcanti AB, Guimaraes HP, Jacka MJ, Graham M, McAlister F, McMurtry S, Townsend D, Pannu N, Bagshaw S, Bessissow A, Bhandari M, Duceppe E, Eikelboom J, Ganame J, Hankinson J, Hill S, Jolly S, Lamy A, Ling E, Magloire P, Pare G, Reddy D, Szalay D, Tittley J, Weitz J, Whitlock R, Darvish-Kazim S, Debeer J, Kavsak P, Kearon C, Mizera R, O'Donnell M, McQueen M, Pinthus J, et al. Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology. 2014;120:564–578. doi: 10.1097/ALN.0000000000000113.
    1. Devereaux PJ, Chan MT, Alonso-Coello P, Walsh M, Berwanger O, Villar JC, Wang CY, Garutti RI, Jacka MJ, Sigamani A, Srinathan S, Biccard BM, Chow CK, Abraham V, Tiboni M, Pettit S, Szczeklik W, Lurati Buse G, Botto F, Guyatt G, Heels-Ansdell D, Sessler DI, Thorlund K, Garg AX, Mrkobrada M, Thomas S, Rodseth RN, Pearse RM, Thabane L, McQueen MJ, VanHelder T, Bhandari M, Bosch J, Kurz A, Polanczyk C, Malaga G, Nagele P, Le Manach Y, Leuwer M, Yusuf S. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2012;307:2295–2304. doi: 10.1001/jama.2012.5502.
    1. Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, Villar JC, Xavier D, Chrolavicius S, Greenspan L, Pogue J, Pais P, Liu L, Xu S, Malaga G, Avezum A, Chan M, Montori VM, Jacka M, Choi P. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet. 2008;371:1839–1847. doi: 10.1016/S0140-6736(08)60601-7.
    1. Mascha EJ, Yang D, Weiss S, Sessler DI. Intraoperative mean arterial pressure variability and 30-day mortality in patients having noncardiac surgery. Anesthesiology. 2015;123:79–91. doi: 10.1097/ALN.0000000000000686.
    1. Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 2005;100:4–10. doi: 10.1213/01.ANE.0000147519.82841.5E.
    1. Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, Kurz A. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology. 2017;126:47–65. doi: 10.1097/ALN.0000000000001432.
    1. Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, Cywinski J, Thabane L, Sessler DI. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology. 2013;119:507–515. doi: 10.1097/ALN.0b013e3182a10e26.
    1. Futier E, Pereira B, Jaber S. Organ dysfunction after surgery in patients treated with individualized or standard blood pressure management-reply. JAMA. 2018;319:721–722. doi: 10.1001/jama.2017.20956.
    1. Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, Rinehart J, Cannesson M. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. 2018 doi: 10.1097/ALN.0000000000002300.
    1. Davies SJ, Vistisen ST, Jian Z, Hatib F, Scheeren TWL. Ability of an arterial waveform analysis-derived Hypotension Prediction Index to predict future hypotensive events in surgical patients. Anesth Analg. 2019 doi: 10.1213/ANE.0000000000004121.
    1. Eeftinck Schattenkerk DW, van Lieshout JJ, van den Meiracker AH, Wesseling KR, Blanc S, Wieling W, van Montfrans GA, Settels JJ, Wesseling KH, Westerhof BE. Nexfin noninvasive continuous blood pressure validated against Riva-Rocci/Korotkoff. Am J Hypertens. 2009;22:378–383. doi: 10.1038/ajh.2008.368.
    1. Heusdens JF, Lof S, Pennekamp CW, Specken-Welleweerd JC, de Borst GJ, van Klei WA, van Wolfswinkel L, Immink RV. Validation of non-invasive arterial pressure monitoring during carotid endarterectomy. Br J Anaesth. 2016;117:316–323. doi: 10.1093/bja/aew268.
    1. Martina JR, Westerhof BE, van Goudoever J, de Beaumont EM, Truijen J, Kim YS, Immink RV, Jobsis DA, Hollmann MW, Lahpor JR, de Mol BA, van Lieshout JJ. Noninvasive continuous arterial blood pressure monitoring with Nexfin(R) Anesthesiology. 2012;116:1092–1103. doi: 10.1097/ALN.0b013e31824f94ed.
    1. Noto A, Sanfilippo F, De Salvo G, Crimi C, Benedetto F, Watson X, Cecconi M, David A. Noninvasive continuous arterial pressure monitoring with Clearsight during awake carotid endarterectomy: a prospective observational study. Eur J Anaesthesiol. 2019;36:144–152. doi: 10.1097/EJA.0000000000000938.
    1. Rogge DE, Nicklas JY, Schon G, Grothe O, Haas SA, Reuter DA, Saugel B. Continuous noninvasive arterial pressure monitoring in obese patients during bariatric surgery: an evaluation of the vascular unloading technique (Clearsight system) Anesth Analg. 2019;128:477–483. doi: 10.1213/ANE.0000000000003943.
    1. Vos JJ, Poterman M, Mooyaart EA, Weening M, Struys MM, Scheeren TW, Kalmar AF. Comparison of continuous non-invasive finger arterial pressure monitoring with conventional intermittent automated arm arterial pressure measurement in patients under general anaesthesia. Br J Anaesth. 2014;113:67–74. doi: 10.1093/bja/aeu091.
    1. Maheshwari K, Khanna S, Bajracharya GR, Makarova N, Riter Q, Raza S, Cywinski JB, Argalious M, Kurz A, Sessler DI. A randomized trial of continuous noninvasive blood pressure monitoring during noncardiac surgery. Anesth Analg. 2018;127:424–431. doi: 10.1213/ANE.0000000000003482.
    1. Scully CG, Daluwatte C. Evaluating performance of early warning indices to predict physiological instabilities. J Biomed Inform. 2017;75:14–21. doi: 10.1016/j.jbi.2017.09.008.
    1. Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci. 1986;1(1):54–75. doi: 10.1214/ss/1177013815.
    1. Beaussier M, Coriat P, Perel A, Lebret F, Kalfon P, Chemla D, Lienhart A, Viars P. Determinants of systolic pressure variation in patients ventilated after vascular surgery. J Cardiothorac Vasc Anesth. 1995;9:547–551. doi: 10.1016/S1053-0770(05)80139-9.
    1. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–873. doi: 10.1378/chest.119.3.867.
    1. Slama M, Masson H, Teboul JL, Arnout ML, Susic D, Frohlich E, Andrejak M. Respiratory variations of aortic VTI: a new index of hypovolemia and fluid responsiveness. Am J Physiol Heart Circ Physiol. 2002;283:H1729–H1733. doi: 10.1152/ajpheart.00308.2002.
    1. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–138. doi: 10.1164/ajrccm.162.1.9903035.
    1. Michard F, Chemla D, Richard C, Wysocki M, Pinsky MR, Lecarpentier Y, Teboul JL. Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med. 1999;159:935–939. doi: 10.1164/ajrccm.159.3.9805077.
    1. Coriat P, Vrillon M, Perel A, Baron JF, Le Bret F, Saada M, Viars P. A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg. 1994;78:46–53. doi: 10.1213/00000539-199401000-00009.
    1. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67:498–502. doi: 10.1097/00000542-198710000-00009.
    1. Rooke GA, Schwid HA, Shapira Y. The effect of graded hemorrhage and intravascular volume replacement on systolic pressure variation in humans during mechanical and spontaneous ventilation. Anesth Analg. 1995;80:925–932.
    1. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89:1313–1321. doi: 10.1097/00000542-199812000-00007.
    1. Chen C, Rodriguez L, Guerrero JL, Marshall S, Levine RA, Weyman AE, Thomas JD. Noninvasive estimation of the instantaneous first derivative of left ventricular pressure using continuous-wave Doppler echocardiography. Circulation. 1991;83:2101–2110. doi: 10.1161/01.CIR.83.6.2101.
    1. Nishimura RA, Tajik AJ. Determination of left-sided pressure gradients by utilizing Doppler aortic and mitral regurgitant signals: validation by simultaneous dual catheter and Doppler studies. J Am Coll Cardiol. 1988;11:317–321. doi: 10.1016/0735-1097(88)90096-4.
    1. Garcia MI, Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, Cecconi M. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Crit Care. 2014;18:626. doi: 10.1186/s13054-014-0626-6.

Source: PubMed

3
Subscribe