Propranolol attenuates hemorrhage and accelerates wound healing in severely burned adults

Arham Ali, David N Herndon, Ashish Mamachen, Samir Hasan, Clark R Andersen, Ro-Jon Grogans, Jordan L Brewer, Jong O Lee, Jamie Heffernan, Oscar E Suman, Celeste C Finnerty, Arham Ali, David N Herndon, Ashish Mamachen, Samir Hasan, Clark R Andersen, Ro-Jon Grogans, Jordan L Brewer, Jong O Lee, Jamie Heffernan, Oscar E Suman, Celeste C Finnerty

Abstract

Introduction: Propranolol, a nonselective β-blocker, exerts an indirect effect on the vasculature by leaving α-adrenergic receptors unopposed, resulting in peripheral vasoconstriction. We have previously shown that propranolol diminishes peripheral blood following burn injury by increasing vascular resistance. The purpose of this study was to investigate whether wound healing and perioperative hemodynamics are affected by propranolol administration in severely burned adults.

Methods: Sixty-nine adult patients with burns covering ≥ 30% of the total body surface area (TBSA) were enrolled in this IRB-approved study. Patients received standard burn care with (n = 35) or without (control, n = 34) propranolol. Propranolol was administered within 48 hours of burns and given throughout hospital discharge to decrease heart rate by approximately 20% from admission levels. Wound healing was determined by comparing the time between grafting procedures. Blood loss was determined by comparing pre- and postoperative hematocrit while factoring in operative graft area. Data were collected between first admission and first discharge.

Results: Demographics, burn size, and mortality were comparable in the control and propranolol groups. Patients in the propranolol group received an average propranolol dose of 3.3 ± 3.0 mg/kg/day. Daily average heart rate over the first 30 days was significantly lower in the propranolol group (P < 0.05). The average number of days between skin grafting procedures was also lower in propranolol patients (10 ± 5 days) than in control patients (17 ± 12 days; P = 0.02), indicative of a faster donor site healing time in the propranolol group. Packed red blood cell infusion was similar between groups (control 5.3 ± 5.4 units vs. propranolol 4.4 ± 3.1 units, P = 0.89). Propranolol was associated with a 5 to 7% improvement in perioperative hematocrit during grafting procedures of 4,000 to 16,000 cm(2) compared to control (P = 0.002).

Conclusions: Administration of propranolol during the acute hospitalization period diminishes blood loss during skin grafting procedures and markedly improves wound healing in severely burned adults. As burn patients require serial surgical interventions for motor and cosmetic repair, restricting blood loss during operative intervention is optimal.

Figures

Figure 1
Figure 1
Proposed mechanism by which propranolol induces peripheral vasoconstriction. Induction of peripheral vasoconstriction by propranolol can be attributed to three main actions. (1) Inhibition of β1 receptors in the heart decreases cardiac output, thereby inducing reflexive peripheral vasoconstriction via stimulation of α1 receptors in vascular smooth muscle. (2) Direct inhibition of β2 receptors incites peripheral vasoconstriction. (3) By blocking β-adrenergic effects of circulating catecholamines epinephrine and norepinephrine, α1-adrenergic receptor effects remain unopposed, resulting in vascular smooth muscle contraction. Solid arrows indicate direct effects, and broken arrows indicate indirect effects.
Figure 2
Figure 2
Patient enrollment diagram.
Figure 3
Figure 3
Patient enrollment and timeline of hospital course. Patients were admitted within 7 days of burn injury. Over the next 48 hours, patients were randomized to control (n = 34) or propranolol (n = 35) groups and then underwent total burn wound excision. Thereafter, patients underwent serial skin grafting procedures once donor sites wounds healed. Patients were then discharged once wounds were deemed to be 95% healed.
Figure 4
Figure 4
Daily heart rate. Daily mean heart rate was significantly lower in patients on propranolol than in control patients. Data are presented as mean ± standard error of the mean. *P <0.05.
Figure 5
Figure 5
Propranolol significantly stabilizes perioperative hematocrit levels. Patients receiving propranolol maintained perioperative hematocrit levels compared to control patients. Propranolol was associated with a 1.6% improvement in perioperative hematocrit levels during grafting procedures with a graft area of 100 cm2, 2.5% improvement with 300 cm2, 3.6% improvement with 1,000 cm2, 5.2% improvement with 4,000 cm2, and 7.1% improvement with 16,000 cm2 (P = 0.002). Data are presented as adjusted mean ± 95% confidence intervals (shaded).

References

    1. Wilmore DW, Aulick LH. Metabolic changes in burned patients. Surg Clin North Am. 1978;58:1173–1187.
    1. Wilmore DW, Long JM, Mason AD, Jr, Skreen RW, Pruitt BA., Jr Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg. 1974;180:653–669. doi: 10.1097/00000658-197410000-00031.
    1. Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. Lancet. 2004;363:1895–1902. doi: 10.1016/S0140-6736(04)16360-5.
    1. Jeschke MG, Gauglitz GG, Kulp GA, Finnerty CC, Williams FN, Kraft R, et al. Long-term persistance of the pathophysiologic response to severe burn injury. PLoS One. 2011;6 doi: 10.1371/journal.pone.0021245.
    1. Herndon DN, Rodriguez NA, Diaz EC, Hegde S, Jennings K, Mlcak RP, et al. Long-term propranolol use in severely burned pediatric patients: a randomized controlled study. Ann Surg. 2012;256:402–411. doi: 10.1097/SLA.0b013e318265427e.
    1. Williams FN, Herndon DN, Kulp GA, Jeschke MG. Propranolol decreases cardiac work in a dose-dependent manner in severely burned children. Surgery. 2011;149:231–239. doi: 10.1016/j.surg.2010.05.015.
    1. Gore DC, Honeycutt D, Jahoor F, Barrow RE, Wolfe RR, Herndon DN. Propranolol diminishes extremity blood flow in burned patients. Ann Surg. 1991;213:568–573. doi: 10.1097/00000658-199106000-00006.
    1. Hogeling M, Adams S, Wargon O. A randomized controlled trial of propranolol for infantile hemangiomas. Pediatrics. 2011;128:e259–e266. doi: 10.1542/peds.2010-0029.
    1. Kim LH, Hogeling M, Wargon O, Jiwane A, Adams S. Propranolol: useful therapeutic agent for the treatment of ulcerated infantile hemangiomas. J Pediatr Surg. 2011;46:759–763. doi: 10.1016/j.jpedsurg.2011.01.012.
    1. Mileti E, Rosenthal P. Management of portal hypertension in children. Curr Gastroenterol Rep. 2011;13:10–16. doi: 10.1007/s11894-010-0151-y.
    1. Bjelakovic B, Bojanovic M, Lukic S, Saranac L, Vukomanovic V, Prijic S, et al. The therapeutic efficacy of propranolol in children with recurrent primary epistaxis. Drug Des Devel Ther. 2013;7:127–129. doi: 10.2147/DDDT.S41756.
    1. Finnerty CC, Ali A, McLean J, Benjamin N, Clayton RP, Andersen CR, et al. Impact of stress-induced diabetes on outcomes in severely burned children. J Am Coll Surg. 2014;218:783–795. doi: 10.1016/j.jamcollsurg.2014.01.038.
    1. Gore DC, Herndon DN, Wolfe RR. Comparison of peripheral metabolic effects of insulin and metformin following severe burn injury. J Trauma. 2005;59:316–322. doi: 10.1097/01.ta.0000180387.34057.5a.
    1. Baxter CR, Shires T. Physiological response to crystalloid resuscitation of severe burns. Ann N Y Acad Sci. 1968;150:874–894. doi: 10.1111/j.1749-6632.1968.tb14738.x.
    1. Budny PG, Regan PJ, Roberts AH. The estimation of blood loss during burns surgery. Burns. 1993;19:134–137. doi: 10.1016/0305-4179(93)90036-8.
    1. Guinn NR, Broomer BW, White W, Richardson W, Hill SE. Comparison of visually estimated blood loss with direct hemoglobin measurement in multilevel spine surgery. Transfusion. 2013;53:2790–2794. doi: 10.1111/trf.12119.
    1. Desai MH, Herndon DN, Broemeling L, Barrow RE, Nichols RJ, Jr, Rutan RL. Early burn wound excision significantly reduces blood loss. Ann Surg. 1990;211:753–759. doi: 10.1097/00000658-199006000-00015.
    1. Herndon DN, Barrow RE, Rutan RL, Rutan TC, Desai MH, Abston S. A comparison of conservative versus early excision. Therapies in severely burned patients. Ann Surg. 1989;209:547–552. doi: 10.1097/00000658-198905000-00006.
    1. Xiao-Wu W, Herndon DN, Spies M, Sanford AP, Wolf SE. Effects of delayed wound excision and grafting in severely burned children. Arch Surg. 2002;137:1049–1054. doi: 10.1001/archsurg.137.9.1049.
    1. Barret JP, Herndon DN. Effects of burn wound excision on bacterial colonization and invasion. Plast Reconstr Surg. 2003;111:744–750. doi: 10.1097/01.PRS.0000041445.76730.23.
    1. Hart DW, Wolf SE, Beauford RB, Lal SO, Chinkes DL, Herndon DN. Determinants of blood loss during primary burn excision. Surgery. 2001;130:396–402. doi: 10.1067/msy.2001.116916.
    1. Mohammadi AA, Bakhshaeekia A, Alibeigi P, Hasheminasab MJ, Tolide-ei HR, Tavakkolian AR, et al. Efficacy of propranolol in wound healing for hospitalized burn patients. J Burn Care Res. 2009;30:1013–1017. doi: 10.1097/BCR.0b013e3181a28e76.
    1. Pullar CE, Manabat-Hidalgo CG, Bolaji RS, Isseroff RR. beta-Adrenergic receptor modulation of wound repair. Pharmacol Res. 2008;58:158–164. doi: 10.1016/j.phrs.2008.07.012.
    1. Pullar CE, Le Provost GS, O'Leary AP, Evans SE, Baier BS, Isseroff RR. beta2AR antagonists and beta2AR gene deletion both promote skin wound repair processes. J Invest Dermatol. 2012; 132:2076–84.
    1. Chi OZ, Liu X, Weiss HR. The effects of propranolol on heterogeneity of rat cerebral small vein oxygen saturation. Anesth Analg. 1999;89:690–695.
    1. von Kanel R, Dimsdale JE, Adler KA, Dillon E, Perez CJ, Mills PJ. Effects of nonspecific beta-adrenergic stimulation and blockade on blood coagulation in hypertension. J Appl Physiol (1985). 2003; 94:1455–9.
    1. Pasquier E, Ciccolini J, Carre M, Giacometti S, Fanciullino R, Pouchy C, et al. Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget. 2011;2:797–809.

Source: PubMed

3
Subscribe