Heart Rate Variability Monitoring during Interferential Current Application in the Lower Back Area: A Cross-Sectional Study

Blanca De-la-Cruz-Torres, Eva Martínez-Jiménez, Emmanuel Navarro-Flores, Patricia Palomo-López, Vanesa Abuín-Porras, Raquel Díaz-Meco-Conde, Daniel López-López, Carlos Romero-Morales, Blanca De-la-Cruz-Torres, Eva Martínez-Jiménez, Emmanuel Navarro-Flores, Patricia Palomo-López, Vanesa Abuín-Porras, Raquel Díaz-Meco-Conde, Daniel López-López, Carlos Romero-Morales

Abstract

Vasovagal reactions may occur occasionally during electrical stimulation using interferential current (IFC). The purpose of this study was to examine variations in autonomic activity during the application of IFC in asymptomatic participants by analysis of their heart rate variability (HRV). Seventy-three male volunteers were randomly assigned to a placebo group (n = 36; HRV was documented for 10 min, both at rest and during a placebo intervention) and an intervention group (n = 37; HRV was documented for 10 min in two conditions labelled as (1) rest and (2) application of IFC technique on the lumbar segment). The diameters of the Poincaré plot (SD1, SD2), stress score (SS), and the ratio between sympathetic and parasympathetic activity (S/PS) were measured. After interventions, differences amongst the placebo group and the IFC group were found in SD2 (p < 0.001), SS (p = 0.01) and S/PS ratio (p = 0.003). The IFC technique was associated with increased parasympathetic modulation, which could induce a vasovagal reaction. Monitorization of adverse reactions should be implemented during the application of IFC technique. HRV indicators might have a part in prevention of vasovagal reactions. Further studies in patients with lumbar pain are needed to explore possible differences in HRV responses due to the presence of chronic pain.

Trial registration: ClinicalTrials.gov NCT03483064.

Keywords: autonomic balance; heart-rate variability; interferential current; sensor technology.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
CONSORT flow diagram of subject recruitment.
Figure 2
Figure 2
Position of electrodes during application of the Interferential Current technique. Subjects were asked to lay down in a prone position, with the low back area unclothed.
Figure 3
Figure 3
Model of Pointcaré plot.
Figure 4
Figure 4
Comparison of SD1, SS, and S/PS ratio between baseline and during intervention for both groups. * Indicates statistically significant within-group differences (p < 0.05); ** Indicates statistically significant within-group differences (p < 0.001).

References

    1. Jorge S., Parada C.A., Ferreira S.H., Tambeli C.H. Interferential therapy produces antinociception during application in various models of inflammatory pain. Phys. Ther. 2006;86:800–808. doi: 10.1093/ptj/86.6.800.
    1. Fuentes C.J., Armijo-Olivo S., Magee D.J., Gross D. Does amplitude-modulated frequency have a role in the hypoalgesic response of interferential current on pressure pain sensitivity in healthy subjects? A randomised crossover study. Physiotherapy. 2010;96:22–29. doi: 10.1016/j.physio.2009.06.009.
    1. Zambito A., Bianchini D., Gatti D., Viapiana O., Rossini M., Adami S. Interferential and horizontal therapies in chronic low back pain: A randomized, double blind, clinical study. Clin. Exp. Rheumatol. 2006;24:534–539.
    1. Adedoyin R.A., Olaogun M.O., Fagbeja O.O. Effect of interferential current stimulation in management of osteo-arthritic knee pain. Physiotherapy. 2002;88:493–499. doi: 10.1016/S0031-9406(05)60851-6.
    1. Guyton A.C., Hall J.E. Textbook of Medical Physiology. 11th ed. WB Saunders Co.; Philadelphia, PA, USA: 2012.
    1. Youn J.I., Lee H.S., Lee S. Determination of effective treatment duration of interferential current therapy using electromyography. J. Phys. Ther. Sci. 2016;28:2400–2403. doi: 10.1589/jpts.28.2400.
    1. García P., De La Cruz-Torres B., Naranjo J., Albornoz-Cabello M. Autonomic Responses to Ultrasound-Guided Percutaneous Needle Electrolysis: Effect of Needle Puncture or Electrical Current? J. Altern. Complement. Med. 2018;24:69–75. doi: 10.1089/acm.2016.0339.
    1. He W., Zhao X., Li Y., Xi Q., Guo Y. Adverse events following acupuncture: A systematic review of the Chinese literature for the years 1956–2010. J. Altern. Complement. Med. 2012;18:892–901. doi: 10.1089/acm.2011.0825.
    1. MacPherson H., Thomas K., Walters S., Fitter M. A prospective survey of adverse events and treatment reactions following 34,000 consultations with professional acupuncturists. Acupunct. Med. 2001;19:93–102. doi: 10.1136/aim.19.2.93.
    1. Jin H.K., Hwang T.Y., Cho S.H. Effect of electrical stimulation on blood flow velocity and vessel size. Open Med. (Wars) 2017;12:5–11. doi: 10.1515/med-2017-0002.
    1. Task Force of ESC and NASPE: Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–1065. doi: 10.1161/01.CIR.93.5.1043.
    1. Naranjo J., De la Cruz B., Sarabia E., De Hoyo M., Domínguez-Cobo S. Heart rate variability: A follow-up in elite soccer players troughout the season. Int. J. Sports Med. 2015;36:881–886. doi: 10.1055/s-0035-1550047.
    1. De la Cruz B., López C., Naranjo J. Analysis of heart rate variability at rest and during aerobic exercise: A study in healthy people and cardiac patients. Br. J. Sports Med. 2008;42:715–720. doi: 10.1136/bjsm.2007.043646.
    1. Kitagawa Y., Kimura K., Yoshida S. Spectral analysis of heart rate variability during trigger point acupuncture. Acupunct. Med. 2014;32:273–278. doi: 10.1136/acupmed-2013-010440.
    1. Albornoz M., Rebollo J., García R. Escala de Aprensión Psicológica Personal (EAPP) en Fisioterapia. Rev. Iberoam Fisioter Kinesol. 2005;2:77–87. doi: 10.1016/S1138-6045(05)72785-4.
    1. Rajfur J., Pasternok M., Rajfur K., Walewicz K., Fras B., Bolach B., Dymarek R., Rosinczuk J., Halski T., Taradaj J. Efficacy of Selected Electrical Therapies on Chronic Low Back Pain: A Comparative Clinical Pilot Study. Med. Sci. Monit. 2017;23:85–100. doi: 10.12659/MSM.899461.
    1. Thiese M.S., Hughes M., Biggs J. Electrical stimulation for chronic non-specific low back pain in a working-age population: A 12-week double blinded randomized controlled trial. BMC Musculoskelet. Disord. 2013;14:117. doi: 10.1186/1471-2474-14-117.
    1. Almeida M., Paladini J.H., Korelo R.G., Liebano R.E., Brandt d Macedo A.C. Effects of the Combination of Interferential Therapy Parameters on Chronic Low Back Pain: A Randomized Controlled Trial. Pain Pract. 2020;20:615–625. doi: 10.1111/papr.12888.
    1. Martín J.M., Cabello M.A., Maldonado G.D. Estudio piloto del dolor lumbar tratado con corrientes interferenciales [Pilot study on low back pain treated with interferential currents] Fisioterapia. 2011;33:243–247. doi: 10.1016/j.ft.2011.07.004.
    1. Fuentes J., Armijo-Olivo S., Funabashi M. Enhanced therapeutic alliance modulates pain intensity and muscle pain sensitivity in patients with chronic low back pain: An experimental controlled study. Phys. Ther. 2014;94:477–489. doi: 10.2522/ptj.20130118.
    1. Bogdány T., Boros S., Szemerszky R., Köteles F. Validation of the Firstbeat TeamBelt and BodyGuard2 systems. Magy. Sporttudományi Szle. 2016;17:5–12.
    1. Brennan M., Palaniswami M., Kamen P. Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 2001;48:134–137. doi: 10.1109/10.959330.
    1. Mourot L., Bouhaddi M., Perrey S., Rouillon J.D., Regnard J. Quantitative Poincaré plot analysis of heart rate variability: Effect of endurance training. Eur. J. Appl. Physiol. 2004;91:79–87. doi: 10.1007/s00421-003-0917-0.
    1. Hoshi R.A., Pastre C.M., Vanderlei L.C., Godoy M.F. Poincaré plot indexes of heart rate variability: Relationships with other nonlinear variables. Auton. Neurosci. 2013;177:271–274. doi: 10.1016/j.autneu.2013.05.004.
    1. Naranjo J., De la Cruz B., Sarabia E., De Hoyo M., Domínguez-Cobo S. Two new indexes for the assessment of autonomic balance in elite soccer players. Int. J. Sports Physiol. Perform. 2015;10:452–457.
    1. Kelley K., Preacher K.J. On effect size. Psych. Methods. 2012;17:137–152. doi: 10.1037/a0028086.
    1. Anderson B., Nielsen A., McKee D., Jeffres A., Kligler B. Acupuncture and heart rate variability:a systems level approach to understanding mechanism. Explore. 2012;8:99–106. doi: 10.1016/j.explore.2011.12.002.
    1. Telles S., Sharma S.K., Gupta R.K., Bhardwaj A.K., Balkrishna A. Heart rate variability in chronic low back pain patients randomized to yoga or standard care. BMC Complement Altern. Med. 2016;16:279. doi: 10.1186/s12906-016-1271-1.
    1. Naumann J., Grebe J., Kaifel S., Weinert T., Sadaghiani C., Huber R. Effects of hyperthermic baths on depression, sleep and heart rate variability in patients with depressive disorder: A randomized clinical pilot trial. BMC Complement. Altern. Med. 2017;17:172. doi: 10.1186/s12906-017-1676-5.
    1. Garrido A., De la Cruz B., Medina M., Garrido M.A., Naranjo J. Heart rate variability after three badminton matches. Are there gender differences? Arch. Med. Deporte. 2011;XXVIII:257–264.
    1. Chuang C.-Y., Tsai C.-N., Kao M.-T., Huang S.H. Effects of massage therapy intervention on autonomic nervous system promotion in integrated circuit design company employees. IFMBE Proc. 2014;43:562–564.
    1. Tbuttagat V., Eungpinichpong W., Chatchawan U., Kharmwan S. The immediate effects of traditional Thai massage on heart rate variability and stress-related parameters in patients with back pain associated with myofascial trigger points. J. Bodyw Mov. Ther. 2011;15:15–23. doi: 10.1016/j.jbmt.2009.06.005.
    1. Girsberger W., Bänziger U., Lingg G., Lothaller H., Endler P.C. Heart rate variability and the influence of craniosacral therapy on autonomous nervous system regulation in persons with subjective disconforts: A pilot study. J. Integr. Med. 2014;12:156–161. doi: 10.1016/S2095-4964(14)60021-2.
    1. Huang H., Zhong Z., Chen J., Huang Y., Luo J., Wu J., Liao H., Zhen E., Lin R., Fasmer O.B., et al. Effect of acupuncture at HT7 on heart rate variability: An exploratory study. Acupunct. Med. 2015;33:30–35. doi: 10.1136/acupmed-2013-010441.
    1. De la Cruz B., Albornoz M., García P., Naranjo J. Autonomic responses to ultrasound-guided percutaneous needle electrolysis of the patellar tendon in healthy male footballers. Acupunct. Med. 2016;34:275–279. doi: 10.1136/acupmed-2015-010993.
    1. García P., De la Cruz B., Naranjo J., Albornoz M. Autonomic activity in women during percutaneous needle electrolysis. Eur. J. Integr. Med. 2017;11:53–58. doi: 10.1016/j.eujim.2017.02.002.
    1. Wälchli C., Saltzwedel G., Krüerke D., Kaufmann C., Schnorr B., Rist L., Eberhard J., Decker M., Simões-Wüst A.P. Physiologic effects of rhythmical massage: A prospective exploratory cohort study. J. Altern. Complement. Med. 2014;20:507–515. doi: 10.1089/acm.2012.0833.
    1. Hideaki W., Tatsuya H., Shogo M., Naruto Y., Hideaki T., Yoichi M., Yoshihiro O., Kazuo U., Hidenori T. Effect of 100 Hz electroacupuncture on salivary immunoglobulin A and the autonomic nervous system. Acupunct. Med. 2015;33:451–456. doi: 10.1136/acupmed-2015-010784.
    1. Tracy L.M., Ioannou L., Baker K.S., Gibson S.J., Georgiou-Karistianis N., Giummarra M.J. Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain. 2016;157:7–29. doi: 10.1097/j.pain.0000000000000360.
    1. Von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008;61:344–349. doi: 10.1016/j.jclinepi.2007.11.008.

Source: PubMed

3
Subscribe