Considerations when measuring myocardial perfusion reserve by cardiovascular magnetic resonance using regadenoson

Nicole M Bhave, Benjamin H Freed, Chattanong Yodwut, Denise Kolanczyk, Karin Dill, Roberto M Lang, Victor Mor-Avi, Amit R Patel, Nicole M Bhave, Benjamin H Freed, Chattanong Yodwut, Denise Kolanczyk, Karin Dill, Roberto M Lang, Victor Mor-Avi, Amit R Patel

Abstract

Background: Adenosine cardiovascular magnetic resonance (CMR) can accurately quantify myocardial perfusion reserve. While regadenoson is increasingly employed due to ease of use, imaging protocols have not been standardized. We sought to determine the optimal regadenoson CMR protocol for quantifying myocardial perfusion reserve index (MPRi) - more specifically, whether regadenoson stress imaging should be performed before or after rest imaging.

Methods: Twenty healthy subjects underwent CMR perfusion imaging during resting conditions, during regadenoson-induced hyperemia (0.4 mg), and after 15 min of recovery. In 10/20 subjects, recovery was facilitated with aminophylline (125 mg). Myocardial time-intensity curves were used to obtain left ventricular cavity-normalized myocardial up-slopes. MPRi was calculated in two different ways: as the up-slope ratio of stress to rest (MPRi-rest), and the up-slope ratio of stress to recovery (MPRi-recov).

Results: In all 20 subjects, MPRi-rest was 1.78 ± 0.60. Recovery up-slope did not return to resting levels, regardless of aminophylline use. Among patients not receiving aminophylline, MPRi-recov was 36 ± 16% lower than MPRi-rest (1.13 ± 0.38 vs. 1.82 ± 0.73, P = 0.001). In the 10 patients whose recovery was facilitated with aminophylline, MPRi-recov was 20 ± 24% lower than MPRi-rest (1.40 ± 0.35 vs. 1.73 ± 0.43, P = 0.04), indicating incomplete reversal. In 3 subjects not receiving aminophylline and 4 subjects receiving aminophylline, up-slope at recovery was greater than at stress, suggesting delayed maximal hyperemia.

Conclusions: MPRi measurements from regadenoson CMR are underestimated if recovery perfusion is used as a substitute for resting perfusion, even when recovery is facilitated with aminophylline. True resting images should be used to allow accurate MPRi quantification. The delayed maximal hyperemia observed in some subjects deserves further study.

Trial registration: ClinicalTrials.gov NCT00871260.

Figures

Figure 1
Figure 1
CMR protocol. Perfusion imaging sequences are separated by 15-min intervals as shown.
Figure 2
Figure 2
A. Example of myocardial tracing and segmentation in a short-axis slice. Endocardial border is shown in green and epicardial border in yellow. The LV myocardium was segmented into 4 sectors (anterior, lateral, inferior, septal). B. Blood pool and segmental myocardial time-intensity curves. Maximum up-slopes (black lines) were determined for the blood pool and for each myocardial segment; the mean myocardial up-slope was then normalized to the blood pool up-slope.
Figure 3
Figure 3
Comparison of perfusion up-slopes at stress and recovery, normalized for rest up-slope, on a per-patient basis. Four subjects in the aminophylline group and 3 subjects in the no-aminophylline group had greater perfusion at recovery than at stress. * P < 0.001; † P = 0.08; **P = 0.02; ‡ P = 0.01; ʃ P = 0.38

References

    1. Greenwood JP, Younger JF, Brown JM, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379:453–60. doi: 10.1016/S0140-6736(11)61335-4.
    1. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2007;50:1343–53. doi: 10.1016/j.jacc.2007.06.030.
    1. Klem I, Heitner JF, Shah DJ, Sketch MH, Behar V, Weinsaft J, Cawley P, Parker M, Elliott M, Judd RM, Kim RJ. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol. 2006;47:1630–8. doi: 10.1016/j.jacc.2005.10.074.
    1. Pilz G, Bernhardt P, Klos M, Ali E, Wild M, Hofling B. Clinical implication of adenosine-stress cardiac magnetic resonance imaging as potential gatekeeper to invasive examination in patients with AHA/ACC class II indication for coronary angiography. Clin Res Cardiol. 2006;95:531–8. doi: 10.1007/s00392-006-0422-7.
    1. Plein S, Greenwood JP, Ridgway JP, Cranny G, Ball SG, Sivananthan MU. Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol. 2004;44:2173–81. doi: 10.1016/j.jacc.2004.08.056.
    1. Plein S, Radjenovic A, Barmby D, Greenwood JP, Ball SG, Sivananthan MU. Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology. 2005;235:423–30. doi: 10.1148/radiol.2352040454.
    1. Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H, Dill T, Larsson HBW, Flamm SD, Marquardt M, Johansson L. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008;29:480–9. doi: 10.1093/eurheartj/ehm617.
    1. Wong DTL, Leung MCH, Das R, Liew GYH, Dundon BK, Molaee P, Teo KSL, Meredith IT, Worthley MI, Worthley SG. Diagnostic accuracy of adenosine stress cardiovascular magnetic resonance following acute ST-segment elevation myocardial infarction post primary angioplasty. J Cardiovasc Magn Reson. 2011;13:62. doi: 10.1186/1532-429X-13-62.
    1. Paetsch I, Jahnke C, Wahl A, Gebker R, Neuss M, Fleck E, Nagel E. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation. 2004;110:835–42. doi: 10.1161/01.CIR.0000138927.00357.FB.
    1. Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, Fleck E, Paetsch I. Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation. 2007;115:1769–76. doi: 10.1161/CIRCULATIONAHA.106.652016.
    1. Ingkanisorn WP, Kwong RY, Bohme NS, Geller NL, Rhoads KL, Dyke CK, Paterson I, Syed MA, Aletras AH, Arai AE. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol. 2006;47:1427–32. doi: 10.1016/j.jacc.2005.11.059.
    1. Bodi V, Husser O, Sanchis J, Nunez J, Monmeneu JV, Lopez-Lereu MP, Bosch MJ, Rumiz E, Minana G, Garcia C, Diago JL, Chaustre F, Moratal D, Gomez C, Aguilar J, Chorro FJ, Llacer A. Prognostic implications of dipyridamole cardiac MR imaging: a prospective multicenter registry. Radiology. 2012;262:91–100. doi: 10.1148/radiol.11110134.
    1. Voigtlander T, Schmermund A, Bramlage P, Elsasser A, Magedanz A, Kauczor HU, Mohrs OK. The adverse events and hemodynamic effects of adenosine-based cardiac MRI. Korean J Radiol. 2011;12:424–30. doi: 10.3348/kjr.2011.12.4.424.
    1. Khoo JP, Grundy BJ, Steadman CD, Sonnex EP, Coulden RA, McCann GP. Stress cardiovascular magnetic resonance in routine clinical practice: referral patterns, accuracy, tolerance, safety and incidental findings. Br J Radiol. 2012;85:e851–-7. doi: 10.1259/bjr/14829242.
    1. Hendel RC, Bateman TM, Cerqueira MD, Iskandrian AE, Leppo JA, Blackburn B, Mahmarian JJ. Initial clinical experience with regadenoson, a novel selective A2A agonist for pharmacologic stress single-photon computed tomography myocardial perfusion imaging. J Am Coll Cardiol. 2005;46:2069–75. doi: 10.1016/j.jacc.2005.05.097.
    1. Al Jaroudi W, Iskandrian AE. Regadenoson: a new myocardial stress agent. J Am Coll Cardiol. 2009;54:1123–30. doi: 10.1016/j.jacc.2009.04.089.
    1. Freed BH, Turner KM, Yodwut C, Tarroni G, Estep E, Bhave NM, Narang A, Tanaka S, Corsi C, Gayat E, Czobor P, Cavanaugh K, Lang R, Mor-Avi V, Patel AR. Regadenoson cardiovascular magnetic resonance myocardial perfusion imaging predicts need for future revascularization [abstract] J Cardiovasc Magn Reson. 2012;14((Suppl 1)):P7.
    1. Patel AR, Antkowiak PF, Nandalur KR, West AM, Salerno M, Arora V, Christopher J, Epstein FH, Kramer CM. Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis. J Am Coll Cardiol. 2010;56:561–9. doi: 10.1016/j.jacc.2010.02.061.
    1. DiBella EVR, Fluckiger JU, Chen L, Kim TH, Pack NA, Matthews B, Adluru G, Priester T, Kuppahally S, Jiji R, McGann C, Litwin SE. The effect of obesity on regadenoson-induced myocardial hyperemia: a quantitative magnetic resonance imaging study. Int J Cardiovasc Imaging. 2012;28:1435–-44. doi: 10.1007/s10554-011-9949-4.
    1. Greenwood JP, Maredia N, Radjenovic A, Brown JM, Nixon J, Farrin AJ, Dickinson C, Younger JF, Ridgway JP, Sculpher M, Ball SG, Plein S. Clinical evaluation of magnetic resonance imaging in coronary heart disease: the CE-MARC study. Trials. 2009;10:62. doi: 10.1186/1745-6215-10-62.
    1. Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, Schonberg SO, Luchner A, Strohm O, Ahlstrom H, Dill T, Hoebel N, Simor T, MR-IMPACT Investigators. MR-IMPACT II: magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J. 2012. Epub ahead of print.
    1. Gordi T, Frohna P, Sun HL, Wolff A, Belardinelli L, Lieu H. A population pharmacokinetic/pharmacodynamic analysis of regadenoson, a selective A2A-receptor agonist, in healthy male volunteers. Clin Pharmacokinet. 2006;45:1201–12. doi: 10.2165/00003088-200645120-00005.
    1. Lieu HD, Shryock JC, von Mering GO, Gordi T, Blackburn B. et al.Regadenoson, a selective A2A adenosine receptor agonist, causes dose-dependent increases in coronary blood flow velocity in humans. J Nuc Cardiol. 2007;14:514–20. doi: 10.1016/j.nuclcard.2007.02.016.
    1. Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, Marber M, Nagel E, Rezavi R, Redwood S, Plein S. High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol. 2011;57:70–5. doi: 10.1016/j.jacc.2010.09.019.
    1. Wohrle J, Nusser T, Merkle N, Kestler HA, Grebe OC, Marx N, Hoher M, Kochs M, Hombach V. Myocardial perfusion reserve in cardiovascular magnetic resonance: Correlation to coronary microvascular dysfunction. J Cardiovasc Magn Reson. 2006;8:781–7. doi: 10.1080/10976640600737649.
    1. Shivu GN, Phan TT, Abozguia K, Ahmed I, Wagenmakers A, Henning A, Narendran P, Stevens M, Frenneaux M. Relationship between coronary microvascular dysfunction and cardiac energetics impairment in type 1 diabetes mellitus. Circulation. 2010;121:1209–15. doi: 10.1161/CIRCULATIONAHA.109.873273.
    1. Nakajima H, Onishi K, Kurita T, Ishida M, Nagata M, Kitagawa K, Dohi K, Nakamura M, Sakuma H, Ito M. Hypertension impairs myocardial blood perfusion reserve in subjects without regional myocardial ischemia. Hypertens Res. 2010;33:1144–9. doi: 10.1038/hr.2010.140.
    1. Patel AR, Epstein FH, Kramer CM. Evaluation of the microcirculation: advances in cardiac magnetic resonance perfusion imaging. J Nucl Cardiol. 2008;15:698–708. doi: 10.1016/j.nuclcard.2008.07.002.
    1. Gao Z, Li Z, Baker SP, Lasley RD, Meyer S, Elzein E, Palle V, Zablocki JA, Blackburn B, Belardinelli L. Novel short-acting A2A adenosine receptor agonists for coronary vasodilation: inverse relationship between affinity and duration of action of A2A agonists. J Pharmacol Exp Ther. 2001;298:209–18.
    1. Ongini E, Fredholm BB. Pharmacology of adenosine A2A receptors. Trends Pharmacol Sci. 1996;17:364–72.

Source: PubMed

3
Subscribe