Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction

He-Jin Lee, Ye-Seul Yoon, Seung-Jae Lee, He-Jin Lee, Ye-Seul Yoon, Seung-Jae Lee

Abstract

Trehalose is a non-reducing disaccharide with two glucose molecules linked through an α, α-1,1-glucosidic bond. Trehalose has received attention for the past few decades for its role in neuroprotection especially in animal models of various neurodegenerative diseases, such as Parkinson and Huntington diseases. The mechanism underlying the neuroprotective effects of trehalose remains elusive. The prevailing hypothesis is that trehalose protects neurons by inducing autophagy, thereby clearing protein aggregates. Some of the animal studies showed activation of autophagy and reduced protein aggregates after trehalose administration in neurodegenerative disease models, seemingly supporting the autophagy induction hypothesis. However, results from cell studies have been less certain; although many studies claim that trehalose induces autophagy and reduces protein aggregates, the studies have their weaknesses, failing to provide sufficient evidence for the autophagy induction theory. Furthermore, a recent study with a thorough examination of autophagy flux showed that trehalose interfered with the flux from autophagosome to autolysosome, raising controversy on the direct effects of trehalose on autophagy. This review summarizes the fundamental properties of trehalose and the studies on its effects on neurodegenerative diseases. We also discuss the controversy related to the autophagy induction theory and seek to explain how trehalose works in neuroprotection.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1. Trehalose metabolism.
Fig. 1. Trehalose metabolism.
a Structure of trehalose. Trehalose consists of two glucose units linked through α, α-1,1-glucosidic bond. It is a stable non-reducing sugar, which is readily hydrolyzed by the enzyme trehalase. b Trehalose synthetic pathways. Five pathways to synthesize trehalose are shown. A most common pathway is the (1)‘‘TPS/TPP’’ pathway to form trehalose-6-phosphate, which is dephosphorylated to become trehalose. (2) Trehalose synthase (TS) synthesize trehalose from maltose. (3) Maltooligosaccharides are broken down to from trehalose by the TreY/TreZ pathway. (4) Trehalose phosphorylase (TreP) utilizes glucose-1-phosphate to form trehalose. (5) ADP-glucose is used to from trehalose by trehalose glycosyltransferring synthase (TreT).
Fig. 2. Autophagic pathways.
Fig. 2. Autophagic pathways.
Activation of autophagy inhibits mTORC1 complex that leads to autophagosome formation. Atg5–atg12–atg16 complex helps elongation of phagophore membrane. Cytosolic LC3-I is converted to lipidated LC3-II and binds to inner and outer membranes of autophagosomes. Mature autophagosomes are formed and are ready for fusion with lysosomes. Lysosomal hydrolases degrade autophagosome contents.
Fig. 3. Regulation of autophagy.
Fig. 3. Regulation of autophagy.
a Distinguishing between autophagosomes and autolysosomes. mRFP-GFP tandem fluorescent-tagged LC3 (tfLC3) fluoresces both GFP and RFP signals (yellow) before it is delivered to lysosomes. GFP in tfLC3 loses its fluorescence in the acidic and degradative lysosomal environment (red). Autophagy induction increases autophagosomes (yellow) and autolysosomes (red) together because the autophagic flux to lysosomes is not disturbed. Blocking fusion of autophagosomes and lysosomes, however, would increase the number of autophagosomes (yellow) only. b Autophagy modulating factors. Autophagy is initiated through inhibition of mTORC1 complex and activation of Class III PI3K complex. 3-methyladenine (3-MA) and Wortmannin prevent autophagy through inhibition of mTORC1 complex. Trehalose may activate autophagy through PI3K. BafA1 and trehalose could both inhibit fusions of autophagosomes and lysosomes, thus blocking final stage of autophagy
Fig. 4. A schematic view of a…
Fig. 4. A schematic view of a hypothesis of trehalose function in the brain.
(1) Trehalose indirectly affects brain function through the regulation of gut microbes, which sends signals to the brain by dendritic immune activation or secretion of neurotransmitters and gut peptides that may be delivered through vagus nerve to the brain. (2) Direct transport of trehalose to the brain, which passes through the blood–brain barrier and affects neuronal cells. (3) The brain sends signals to the enteric system to modulate trehalose function

References

    1. Birch GG. Trehaloses. Adv. Carbohydr. Chem. 1963;18:201–225.
    1. Colaco C, Kampinga J, Roser B. Amorphous stability and trehalose. Science. 1995;268:788. doi: 10.1126/science.7754360.
    1. Arguelles JC. Why can’t vertebrates synthesize trehalose? J. Mol. Evol. 2014;79:111–116. doi: 10.1007/s00239-014-9645-9.
    1. Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell. 1998;1:639–648. doi: 10.1016/S1097-2765(00)80064-7.
    1. Crowe JH, et al. Stabilization of membranes in human platelets freeze-dried with trehalose. Chem. Phys. Lipids. 2003;122:41–52. doi: 10.1016/S0009-3084(02)00177-9.
    1. Crowe JH, Crowe LM, Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984;223:701–703. doi: 10.1126/science.223.4637.701.
    1. Kawai H, Sakurai M, Inoue Y, Chujo R, Kobayashi S. Hydration of oligosaccharides: anomalous hydration ability of trehalose. Cryobiology. 1992;29:599–606. doi: 10.1016/0011-2240(92)90064-9.
    1. Donnamaria MC, Howard EI, Grigera JR. Interaction of water with a,a-trehalose in solution: Molecular dynamics simulation approach. J. Chem. Soc. Faraday Trans. 1994;90:2731–2735. doi: 10.1039/FT9949002731.
    1. Arakawa T, Carpenter JF, Kita YA, Crowe JH. The basis for toxicity of certain cryoprotectants: A hypothesis. Cryobiology. 1990;27:401–415. doi: 10.1016/0011-2240(90)90017-X.
    1. Allison SD, Chang B, Randolph TW, Carpenter JF. Hydrogen Bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Arch. Biochem. Biophys. 1999;365:289–298. doi: 10.1006/abbi.1999.1175.
    1. Slade L, Levine H. A food polymer science approach to structure-property relationships in aqueous food systems: non-equilibrium behavior of carbohydrate-water systems. Adv. Exp. Med. Biol. 1991;302:29–101. doi: 10.1007/978-1-4899-0664-9_3.
    1. McBride MJ, Ensign JC. Effects of intracellular trehalose content on Streptomyces griseus spores. J. Bacteriol. 1987;169:4995–5001. doi: 10.1128/jb.169.11.4995-5001.1987.
    1. Van Dijck P, Colavizza D, Smet P, Thevelein JM. Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 1995;61:109–115.
    1. Womersley C, Smith L. Anhydrobiosis in nematodes i. The role of glycerol myo-inositol and trehalose during desiccation. Comp. Biochem. Physiol. 1981;70B:579–586.
    1. Elbein AD. The metabolism of alpha,alpha-trehalose. Adv. Carbohydr. Chem. Biochem. 1974;30:227–256. doi: 10.1016/S0065-2318(08)60266-8.
    1. Guo N, Puhlev I, Brown DR, Mansbridge J, Levine F. Trehalose expression confers desiccation tolerance on human cells. Nat. Biotechnol. 2000;18:168–171. doi: 10.1038/72616.
    1. Barton JK, Den Hollander JA, Hopfield JJ, Shulman RG. 13C nuclear magnetic resonance study of trehalose mobilization in yeast spores. J. Bacteriol. 1982;151:177–185.
    1. Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M. Trehalose metabolism in plants. Plant J. 2014;79:544–567. doi: 10.1111/tpj.12509.
    1. Wyatt GR, Kale GF. The chemistry of insect hemolymph. II. Trehalose Other Carbohydr. J. Gen. Physiol. 1957;40:833–847. doi: 10.1085/jgp.40.6.833.
    1. Iturriaga G, Suarez R, Nova-Franco B. Trehalose metabolism: from osmoprotection to signaling. Int. J. Mol. Sci. 2009;10:3793–3810. doi: 10.3390/ijms10093793.
    1. Cabib E, Leloir LF. The biosynthesis of trehalose phosphate. J. Biol. Chem. 1958;231:259–275.
    1. Nishimoto T, et al. Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci. Biotechnol. Biochem. 1996;60:640–644. doi: 10.1271/bbb.60.640.
    1. Maruta K, et al. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta. 1996;1291:177–181. doi: 10.1016/S0304-4165(96)00082-7.
    1. Ren Y. Gene expression and molecular characterization of a ther-mostable trehalose phosphorylase from Thermoanaerobacter tengcongensis. Sci. China Ser. C. 2005;48:221–7.
    1. Qu Q, Lee SJ, Boos W. TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J. Biol. Chem. 2004;279:47890–47897. doi: 10.1074/jbc.M404955200.
    1. Gomez LD, Baud S, Gilday A, Li Y, Graham IA. Delayed embryo development in the ARABIDOPSIS TREHALOSE-6-PHOSPHATE SYNTHASE 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. Plant J. 2006;46:69–84. doi: 10.1111/j.1365-313X.2006.02662.x.
    1. Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA. 2003;100:6849–6854. doi: 10.1073/pnas.1132018100.
    1. Wahl V, et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science. 2013;339:704–707. doi: 10.1126/science.1230406.
    1. Bloch H. Studies on the virulence of tubercle bacilli; the relationship of the physiological state of the organisms to their pathogenicity. J. Exp. Med. 1950;92:507–526. doi: 10.1084/jem.92.6.507.
    1. Lemaire G, Tenu JP, Petit JF, Lederer E. Natural and synthetic trehalose diesters as immunomodulators. Med. Res. Rev. 1986;6:243–274. doi: 10.1002/med.2610060302.
    1. Ryll R, Kumazawa Y, Yano I. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids-a review. Microbiol. Immunol. 2001;45:801–811. doi: 10.1111/j.1348-0421.2001.tb01319.x.
    1. Middlebrook G, Coleman CM, Schaefer WB. Sulfolipid from virulent tubercle bacilli. Proc. Natl Acad. Sci. USA. 1959;45:1801–1804. doi: 10.1073/pnas.45.12.1801.
    1. Khan AA, Stocker BL, Timmer MS. Trehalose glycolipids-synthesis and biological activities. Carbohydr. Res. 2012;356:25–36. doi: 10.1016/j.carres.2012.03.010.
    1. Wilson RA, et al. Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. Embo J. 2007;26:3673–3685. doi: 10.1038/sj.emboj.7601795.
    1. Djonovic S, et al. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants. PLoS Pathog. 2013;9:e1003217. doi: 10.1371/journal.ppat.1003217.
    1. Singh V, et al. Trehalose phosphate synthase11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect Myzus persicae. Plant J. 2011;67:94–104. doi: 10.1111/j.1365-313X.2011.04583.x.
    1. Hofmann J, et al. Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. Plant J. 2010;62:1058–1071.
    1. Veluthambi K, Mahadevan S, Maheshwari R. Trehalose toxicity in Cuscuta reflexa: Correlation with low trehalase activity. Plant Physiol. 1981;68:1369–1374. doi: 10.1104/pp.68.6.1369.
    1. Veluthambi K, Mahadevan S, Maheshwari R. Trehalose toxicity in Cuscuta reflexa: Cell wall synthesis is inhibited upon trehalose feeding. Plant Physiol. 1982;70:686–688. doi: 10.1104/pp.70.3.686.
    1. Strom AR, Kaasen I. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol. Microbiol. 1993;8:205–210. doi: 10.1111/j.1365-2958.1993.tb01564.x.
    1. Purvis JE, Yomano LP, Ingram LO. Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl. Environ. Microbiol. 2005;71:3761–3769. doi: 10.1128/AEM.71.7.3761-3769.2005.
    1. Thevelein JM. Regulation of trehalose mobilization in fungi. Microbiol. Rev. 1984;48:42–59.
    1. De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur. J. Biochem. 1994;219:179–186. doi: 10.1111/j.1432-1033.1994.tb19928.x.
    1. Hottiger T, De Virgilio C, Hall MN, Boller T, Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur. J. Biochem. 1994;219:187–193. doi: 10.1111/j.1432-1033.1994.tb19929.x.
    1. Wen X, et al. Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature. Proc. Natl Acad. Sci. USA. 2016;113:6683–6688. doi: 10.1073/pnas.1601519113.
    1. Tang B, et al. Invertebrate trehalose-6-phosphate synthase gene: Genetic architecture, biochemistry, physiological function, and potential applications. Front Physiol. 2018;9:30. doi: 10.3389/fphys.2018.00030.
    1. Fernandez O, Bethencourt L, Quero A, Sangwan RS, Clement C. Trehalose and plant stress responses: friend or foe? Trends Plant Sci. 2010;15:409–417. doi: 10.1016/j.tplants.2010.04.004.
    1. Nwaka S, Kopp M, Holzer H. Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J. Biol. Chem. 1995;270:10193–10198. doi: 10.1074/jbc.270.17.10193.
    1. Nwaka S, Mechler B, Destruelle M, Holzer H. Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett. 1995;360:286–290. doi: 10.1016/0014-5793(95)00105-I.
    1. Ishihara R, et al. Molecular cloning, sequencing and expression of cDNA encoding human trehalase. Gene. 1997;202:69–74. doi: 10.1016/S0378-1119(97)00455-1.
    1. Galand G. Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals. Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications. Comp. Biochem. Physiol. B. 1989;94:1–11. doi: 10.1016/0305-0491(89)90002-3.
    1. Richards AB, et al. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem. Toxicol. 2002;40:871–898. doi: 10.1016/S0278-6915(02)00011-X.
    1. Buts JP, Stilmant C, Bernasconi P, Neirinck C, De Keyser N. Characterization of alpha,alpha-trehalase released in the intestinal lumen by the probiotic Saccharomyces boulardii. Scand. J. Gastroenterol. 2008;43:1489–1496. doi: 10.1080/00365520802308862.
    1. Muller YL, et al. Identification of genetic variation that determines human trehalase activity and its association with type 2 diabetes. Hum. Genet. 2013;132:697–707. doi: 10.1007/s00439-013-1278-3.
    1. Eze LC. Plasma trehalase activity and diabetes mellitus. Biochem. Genet. 1989;27:487–495. doi: 10.1007/BF02396146.
    1. Ouyang Y, Xu Q, Mitsui K, Motizuki M, Xu Z. Human trehalase is a stress responsive protein in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 2009;379:621–625. doi: 10.1016/j.bbrc.2008.12.134.
    1. Huang J, Reggiori F, Klionsky DJ. The transmembrane domain of acid trehalase mediates ubiquitin-independent multivesicular body pathway sorting. Mol. Biol. Cell. 2007;18:2511–2524. doi: 10.1091/mbc.e06-11-0995.
    1. Dellamora-Ortiz GM, Ortiz CH, Maia JC, Panek AD. Partial purification and characterization of the interconvertible forms of trehalase from Saccharomyces cerevisiae. Arch. Biochem. Biophys. 1986;251:205–214. doi: 10.1016/0003-9861(86)90067-6.
    1. Martin PT. Glycobiology of the synapse. Glycobiology. 2002;12:1R–7R. doi: 10.1093/glycob/12.1.1R.
    1. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J. Cereb. Blood Flow. Metab. 2007;27:1766–1791. doi: 10.1038/sj.jcbfm.9600521.
    1. Best T, Bryan J, Burns N. An investigation of the effects of saccharides on the memory performance of middle-aged adults. J. Nutr. Health Aging. 2008;12:657–662.
    1. Best T, Kemps E, Bryan J. Association between dietary saccharide intake and self-reported memory performance in middle-aged adults. Br. J. Nutr. 2009;101:93–99. doi: 10.1017/S0007114508984257.
    1. Best T, Kemps E, Bryan J. Saccharide effects on cognition and well-being in middle-aged adults: a randomized controlled trial. Dev. Neuropsychol. 2010;35:66–80. doi: 10.1080/87565640903325709.
    1. Paz I, et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell. Microbiol. 2010;12:530–544. doi: 10.1111/j.1462-5822.2009.01415.x.
    1. Nelson ED, Ramberg JE, Best T, Sinnott RA. Neurologic effects of exogenous saccharides: a review of controlled human, animal, and in vitro studies. Nutr. Neurosci. 2012;15:149–162. doi: 10.1179/1476830512Y.0000000004.
    1. Tanaka M, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med. 2004;10:148–154. doi: 10.1038/nm985.
    1. Castillo K, et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy. 2013;9:1308–1320. doi: 10.4161/auto.25188.
    1. Rodriguez-Navarro JA, et al. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol. Dis. 2010;39:423–438. doi: 10.1016/j.nbd.2010.05.014.
    1. Sarkar S, et al. Neuroprotective effect of the chemical chaperone, trehalose in a chronic MPTP-induced Parkinson’s disease mouse model. Neurotoxicology. 2014;44:250–262. doi: 10.1016/j.neuro.2014.07.006.
    1. Liu R, Barkhordarian H, Emadi S, Park CB, Sierks MR. Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol. Dis. 2005;20:74–81. doi: 10.1016/j.nbd.2005.02.003.
    1. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem. 2007;282:5641–5652. doi: 10.1074/jbc.M609532200.
    1. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–1721. doi: 10.1126/science.290.5497.1717.
    1. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–1075. doi: 10.1038/nature06639.
    1. Beranger F, Crozet C, Goldsborough A, Lehmann S. Trehalose impairs aggregation of PrPSc molecules and protects prion-infected cells against oxidative damage. Biochem. Biophys. Res. Commun. 2008;374:44–48. doi: 10.1016/j.bbrc.2008.06.094.
    1. Casarejos MJ, et al. The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells. Neurochem. Int. 2011;58:512–520. doi: 10.1016/j.neuint.2011.01.008.
    1. Tanji K, et al. Trehalose intake induces chaperone molecules along with autophagy in a mouse model of Lewy body disease. Biochem. Biophys. Res. Commun. 2015;465:746–752. doi: 10.1016/j.bbrc.2015.08.076.
    1. Kimura S, Fujita N, Noda T, Yoshimori T. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol. 2009;452:2–12.
    1. Aguib Y, et al. Autophagy induction by trehalose counteracts cellular prion infection. Autophagy. 2009;5:361–369. doi: 10.4161/auto.5.3.7662.
    1. Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007;3:452–460. doi: 10.4161/auto.4451.
    1. Yoon YS, et al. Is trehalose an autophagic inducer? Unraveling the roles of non-reducing disaccharides on autophagic flux and alpha-synuclein aggregation. Cell Death Dis. 2017;8:e3091. doi: 10.1038/cddis.2017.501.
    1. Tien NT, Karaca I, Tamboli IY, Walter J. Trehalose alters subcellular trafficking and the metabolism of the Alzheimer-associated amyloid precursor protein. J. Biol. Chem. 2016;291:10528–10540. doi: 10.1074/jbc.M116.719286.
    1. Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC. Does bafilomycin A1block the fusion of autophagosomes with lysosomes? Autophagy. 2014;4:849–850. doi: 10.4161/auto.6845.
    1. DeBosch BJ, et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci. Signal. 2016;9:ra21. doi: 10.1126/scisignal.aac5472.
    1. Mayer AL, et al. SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy. Sci. Rep. 2016;6:38586. doi: 10.1038/srep38586.
    1. Spina-Purrello V, et al. Modulation of PARP-1 and PARP-2 expression by L-carnosine and trehalose after LPS and INFgamma-induced oxidative stress. Neurochem. Res. 2010;35:2144–2153. doi: 10.1007/s11064-010-0297-x.
    1. Li Y, et al. Trehalose inhibits protein aggregation caused by transient ischemic insults through preservation of proteasome activity, not via induction of autophagy. Mol. Neurobiol. 2016;54:6857–6869. doi: 10.1007/s12035-016-0196-5.
    1. Dimasi P, Quintiero A, Shelkovnikova TA, Buchman VL. Modulation of p-eIF2alpha cellular levels and stress granule assembly/disassembly by trehalose. Sci. Rep. 2017;7:44088. doi: 10.1038/srep44088.
    1. Redmann M, Wani WY, Volpicelli-Daley L, Darley-Usmar V, Zhang J. Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils. Redox Biol. 2017;11:429–437. doi: 10.1016/j.redox.2016.12.032.
    1. Felice VD, Quigley EM, Sullivan AM, O’Keeffe GW, O’Mahony SM. Microbiota-gut-brain signalling in Parkinson’s disease: Implications for non-motor symptoms. Park. Relat. Disord. 2016;27:1–8. doi: 10.1016/j.parkreldis.2016.03.012.
    1. Martano G, et al. Biosynthesis of astrocytic trehalose regulates neuronal arborization in hippocampal neurons. ACS Chem. Neurosci. 2017;8:1865–1872. doi: 10.1021/acschemneuro.7b00177.
    1. Montiel-Castro AJ, Gonzalez-Cervantes RM, Bravo-Ruiseco G, Pacheco-Lopez G. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front. Integr. Neurosci. 2013;7:70. doi: 10.3389/fnint.2013.00070.

Source: PubMed

3
Subscribe