Effects of light-emitting diodes on muscle fatigue and exercise tolerance in patients with COPD: study protocol for a randomized controlled trial

Eduardo Foschini Miranda, Ernesto Cesar Pinto Leal-Junior, Paulo Henrique Marchetti, Simone Dal Corso, Eduardo Foschini Miranda, Ernesto Cesar Pinto Leal-Junior, Paulo Henrique Marchetti, Simone Dal Corso

Abstract

Background: Light-emitting diodes (LED) have been used to minimize muscle fatigue in athletes and healthy subjects. Patients with chronic obstructive pulmonary disease (COPD) are susceptible to early muscle fatigue.

Objective: The objective of this study is to investigate the acute effects of LED on muscle function, exercise capacity and cardiorespiratory responses during isometric and dynamic exercise in patients with COPD.

Methods: This study will assess 30 patients with moderate to severe obstruction (forced expiratory volume-one second,FEV1 ≤70% predicted). Isometric and dynamic protocols will be conducted in two visits each, for a total of four visits a week apart. First, venous blood will be taken from the patients. The isometric protocol will start with the determination of the maximum voluntary isometric contraction (MIVC) to determine the workload (60% of MIVC) for the isometric endurance test (IET). Patients will be randomized to receive either the placebo or LED application (each point will be irradiated for 30 s and the energy received at each point will be 41.7 J). Immediately after finishing this procedure, the patients will carry out the IET until the limit of tolerance or until a 20% fall of strength is observed. After the test, another blood draw will be taken. In another visit (one week later), the same order of procedures will be performed, except with the opposite (LED or placebo). For the dynamic endurance test (DET), the same procedures described above will be followed, except with 75% of the maximal workload obtained from the incremental cycle ergometer test used instead of the IET. The electromyography will be recorded during the isometric and dynamic protocols. Differences in muscle function, exercise capacity and cardiorespiratory responses between the LED and placebo applications will be analyzed. The therapeutic effects of LED could minimize muscle fatigue in patients with COPD by increasing exercise tolerance.

Trial registration number: NCT01448564.

Figures

Figure 1
Figure 1
Flow of patients through the study.
Figure 2
Figure 2
Schematic representation of the isometric and dynamic protocols.

References

    1. Berton E, Antonucci R, Palange P. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Monaldi Arch Chest Dis. 2001;56:418–422.
    1. Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med. 1996;153:976–980. doi: 10.1164/ajrccm.153.3.8630582.
    1. Serres I, Gautier V, Varray A, Préfaut C. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest. 1998;113:900–905. doi: 10.1378/chest.113.4.900.
    1. Gosker HR, Engelen MP, van Mameren H, van Dijk PJ, van der Vusse GJ, Wouters EF, Schols AM. Muscle fiber type IIX atrophy is involved in the loss of fat-free mass in chronic obstructive pulmonary disease. Am J Clin Nutr. 2002;76:113–119.
    1. Gosker HR, van Mameren H, van Dijk PJ, Engelen MP, van der Vusse GJ, Wouters EF, Schols AM. Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J. 2002;19:617–625. doi: 10.1183/09031936.02.00762001.
    1. Maltais F, LeBlanc P, Whittom F, Simard C, Marquis K, Bélanger M, Breton MJ, Jobin J. Oxidative enzyme activities of the vastuslateralis muscle and the functional status in patients with COPD. Thorax. 2000;55:848–853. doi: 10.1136/thorax.55.10.848.
    1. Jobin J, Maltais F, Doyon JF, LeBlanc P, Simard PM, Simard AA, Simard C. Chronic obstructive pulmonary disease: capillarity and fiber characteristics of skeletal muscle. J Cardiopulm Rehabil. 1998;18:432–437. doi: 10.1097/00008483-199811000-00005.
    1. Whittom F, Jobin J, Simard PM, Leblanc P, Simard C, Bernard S, Belleau R, Maltais F. Histochemical and morphological characteristics of the vastuslateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc. 1998;30:1467–74. doi: 10.1097/00005768-199810000-00001.
    1. Karu T. Photobiological fundamentals of low-power laser therapy. IEEE J Quant Electron. 2002;23:1703–1717.
    1. Lin F, Josephs SF, Alexandrescu DT, Ramos F, Bogin V, Gammill V, Dasanu CA, De Necochea-Champion R, Patel AN, Carrier E, Koos DR. Lasers, stem cells, and COPD. J Transl Med. 2010;8:16. doi: 10.1186/1479-5876-8-16.
    1. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose–response. 2009;7:358–383. doi: 10.2203/dose-response.09-027.Hamblin.
    1. Enwemeka CS. Light is light. Photomed. Laser Surg. 2005;23:159–160. doi: 10.1089/pho.2005.23.159.
    1. Mester E, Szende B, Tota JG. Effect of laser on hair growth of mice. Kiserl Orvostud. 1967;19:628–631.
    1. Karu TI. Primary and secondary mechanisms of action of visible-to-near IR radiation on cells. J Photochem Photobiol. 1999;49:1–17. doi: 10.1016/S1011-1344(98)00219-X.
    1. Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F. In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol. 2010;86:673–680. doi: 10.1111/j.1751-1097.2010.00732.x.
    1. Ferraresi C, Hamblin MR, Parizotto NA. Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med. 2012;1:267–286.
    1. De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci. 2012;27:231–236. doi: 10.1007/s10103-011-0955-5.
    1. Baroni BM, Leal Junior EC, Geremia JM, Diefenthaeler F, Vaz MA. Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg. 2010;28:653–658. doi: 10.1089/pho.2009.2688.
    1. Oron U, Ilic S, De Taboada L, Streeter J. Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg. 2007;25:180–182. doi: 10.1089/pho.2007.2064.
    1. Sociedade Brasileira de Pneumologia e Tisiologia. Diretrizes para testes de função pulmonar. [Guidelines for pulmonary function tests] J Pneumol. 2002;28(Suppl 3):S44–S58.
    1. Pereira CAC, Barreto SP, Simões JG. Valores de referência para espirometria em uma amostra da população brasileira adulta. [Reference values for spirometry in a sample of the adult Brazilian population] J Pneumol. 1992;18:10–22.
    1. Mathur S, Eng JJ, MacIntyre DL. Realiability of surface EMG during sustained contractions of quadríceps. J Electromyogr Kinesiol. 2005;15:102–110. doi: 10.1016/j.jelekin.2004.06.003.
    1. Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health. 1990;16(Suppl 1):55–58.
    1. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Eletromyogr Kinesiol. 2000;10:361–374. doi: 10.1016/S1050-6411(00)00027-4.
    1. Alkner BA, Tesch PA, Berg HE. Quadriceps EMG/force relationship in knee extension and leg press. Med Sci Sports Exerc. 2000;32:459–463. doi: 10.1097/00005768-200002000-00030.
    1. Burden A, Bartlett R. Normalisation of EMG amplitude: an evaluation and comparison of old and newmethods. Med Eng Phys. 1999;21:247–257. doi: 10.1016/S1350-4533(99)00054-5.
    1. De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech. 1997;13:135–163.
    1. Madeleine P, Farina D, Merletti R, Arendt-Nielsen L. Upper trapezius muscle mechanomyographic and electromyographic activity in humans during low force fatiguing and non-fatiguing contractions. Eur J Appl Physiol. 2002;87:327–336. doi: 10.1007/s00421-002-0655-8.
    1. Merletti R, Lo Conte L, Cisari C, Actis MV. Age related changes in surface myoelectric signals. Scand J Rehabil Med. 1992;24:25–36.
    1. Merletti R, Farina D, Gazzoni M, Schieroni MP. Effect of age on muscle functions investigated with surface electromyography. Muscle Nerve. 2002;25:65–76. doi: 10.1002/mus.10014.
    1. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol. 1983;55:1558–1564.
    1. Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Rossi RP, Grosselli D, Generosi RA, de Godoi V, Basso M, Mancalossi JL, Bjordal JM. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg. 2009;27:617–623. doi: 10.1089/pho.2008.2350.
    1. Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. doi: 10.1136/bmj.c869.
    1. Nápolis LM, Dal Corso S, Neder JA, Malaguti C, Gimenes AC, Nery LE. Neuromuscular electrical stimulation improves exercise tolerance in chronic obstructive pulmonary disease patients with better preserved fat-free mass. Clinics. 2011;66:401–406. doi: 10.1590/S1807-59322011000300006.
    1. Man WD, Soliman MG, Gearing J, Radford SG, Rafferty GF, Gray BJ, Polkey MI, Moxham J. Symptoms and quadriceps fatigability after walking and cycling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168:562–567. doi: 10.1164/rccm.200302-162OC.
    1. Coronell C, Orozco-Levi M, Méndez R, Ramírez-Sarmiento A, Gáldiz JB, Gea J. Relevance of assessing quadriceps endurance in patients with COPD. Eur Respir J. 2004;24:129–136. doi: 10.1183/09031936.04.00079603.
    1. de Almeida P, Lopes-Martins RA, De Marchi T, Tomazoni SS, Albertini R, Corrêa JC, Rossi RP, Machado GP, da Silva DP, Bjordal JM, Leal Junior EC. Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med Sci. 2012;27:453–8. doi: 10.1007/s10103-011-0957-3.
    1. Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM. Effect of 655-nm low level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg. 2008;26:419–424. doi: 10.1089/pho.2007.2160.
    1. Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM. Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci. 2009;24:425–431. doi: 10.1007/s10103-008-0592-9.
    1. Vacca RA, Marra E, Passarella S, Petragallo VA, Greco M. Increase in cytosolic and mitochondrial protein synthesis in rat hepatocytes irradiated in vitro by He-Ne laser. J Photochem Photobiol B. 1996;34:197–202. doi: 10.1016/1011-1344(95)07280-2.
    1. Gulsoy M, Ozer GH, Bozkulak O, Tabakoglu HO, Aktas E, Deniz G, Ertan C. The biological effects of 632.8-nm low energy He-Ne laser on peripheral blood mononuclear cells in vitro. J Photochem Photobiol B. 2005;82:199–202.
    1. Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Taufer D, Manfro DS, Rech M, Danna V, Grosselli D, Generosi RA, Marcos RL, Ramos L, Bjordal JM. Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci. 2009;24:857–863. doi: 10.1007/s10103-008-0633-4.
    1. Low J, Laserterapia RA. In: Electrotherapy Explained Principles and Practice] 3. Rosa VLD, Bardeli N, editor. São Paulo: Manole Editor LTDA; 2001. Eletroterapia explicada principios e prática. [Laser Therapy; pp. 389–409.
    1. Ihsan FR. Low level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg. 2005;23:289–294. doi: 10.1089/pho.2005.23.289.
    1. Rizzi CF, Mauriz JL, Freitas Correa DS, Moreira AJ, Zettler CG, Filippin LI, Marroni NP, Gonzalez-Gallego J. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med. 2006;38:704–713. doi: 10.1002/lsm.20371.
    1. Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med. 2009;41:572–577. doi: 10.1002/lsm.20810.
    1. Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls CF, Iversen VV, Bjordal JM. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports PhysTher. 2010;40:524–532.
    1. Schulte E, Kallenberg LA, Christensen H, Disselhorst-Klug C, Hermes HJ, Rau G, Søgaard K. Comparison of the eletromyographic activity in the upper trapezius and biceps brachii muscle in subjects with muscular disorders: a pilot study. Eur J Appl Physiol. 2006;96:185–193. doi: 10.1007/s00421-004-1291-2.
    1. Karu TI, Afanasyeva NI, Kolyakov SF, Pyatibrat LV, Welser L. Changes in absorbance of monolayer of living cells induced by laser irradiation at 633, 670 and 820 nm. Quantum Elect. 2001;7:982–988.
    1. Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009;95:89–92. doi: 10.1016/j.jphotobiol.2009.01.004.

Source: PubMed

3
Subscribe